精英家教网 > 高中数学 > 题目详情

【题目】【2017湖南长沙二模】某种产品的质量以其质量指标值衡量,并依据质量指标值划分等极如下表:

质量指标值

等级

三等品

二等品

一等品

从某企业生产的这种产品中抽取200件,检测后得到如下的频率分布直方图:

1根据以上抽样调查数据,能否认为该企业生产的这种产品符合“一、二等品至少要占全部产品90%”的规定?

2在样本中,按产品等极用分层抽样的方法抽取8件,再从这8件产品中随机抽取4件,求抽取的4件产品中,一、二、三等品都有的概率;

3该企业为提高产品质量,开展了“质量提升月”活动,活动后再抽样检测,产品质量指标值近似满足,则“质量提升月”活动后的质量指标值的均值比活动前大约提升了多少?

【答案】1见解析;2;317.6

【解析】试题分析:1根据频率分布直方图,一、二等品所占比例的估计值为

,可做出判断.

2由频率分布直方图的频率分布可知8件产品中,一等品3件,二等品4件,三等品1件,分类讨论各种情况可得.

3算出“质量提升月”活动前,后产品质量指标值为,可得质量指标值的均值比活动前大约提升了17.6

试题解析:1根据抽样调查数据,一、二等品所占比例的估计值为,由于该估计值小于0.92,故不能认为该企业生产的这种产品符合“一、二等品至少要占全部产品92%”的规定.

2由频率分布直方图知,一、二、三等品的频率分别为0.375、0.5、0.125,故在样本中用分层抽样方法抽取的8件产品中,一等品3件,二等品4件,三等品1件,再从这8件产品中随机抽取4件,一、二、三等品都有的情况有2种:①一等品2件,二等品1件,三等品1件;②一等品1件,二等品2件,三等品1件,故所求的概率.

3“质量提升月”活动前,该企业这种产品的质量指标值的均值约为

“质量提升月”活动后,产品质量指标值近似满足,则.

所以,“质量提升月”活动后的质量指标值的均值比活动前大约提升了17.6

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某天数学课上,你突然惊醒,发现黑板上有如下内容:
例:求x3﹣3x,x∈[0,+∞)的最小值.解:利用基本不等式a+b+c≥3 ,得到x3+1+1≥3x,于是x3﹣3x=x3+1+1﹣3x﹣2≥3x﹣3x﹣2=﹣2,当且仅当x=1时,取到最小值﹣2
(1)老师请你模仿例题,研究x4﹣4x,x∈[0,+∞)上的最小值;
(提示:a+b+c+d≥4
(2)研究 x3﹣3x,x∈[0,+∞)上的最小值;
(3)求出当a>0时,x3﹣ax,x∈[0,+∞)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017安徽马鞍山二模】已知动圆过定点,且在轴上截得的弦长为4,记动圆圆心的轨迹为曲线C

(Ⅰ)求直线与曲线C围成的区域面积;

(Ⅱ)点在直线上,点,过点作曲线C的切线,切点分别为,证明:存在常数,使得,并求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递减,若f(log2a)+f(2log a)≥2f(﹣1),则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中:①、若m>0,则方程x2﹣x+m=0有实根. ②、若x>1,y>1,则x+y>2的逆命题. ③、对任意的x∈{x|﹣2<x<4},|x﹣2|<3的否定形式. ④、△>0是一元二次方程ax2+bx+c=0有一正根和一负根的充要条件.是真命题的有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)= 是奇函数,则使f(x)>3成立的x的取值范围为(
A.(﹣∞,﹣1)
B.(﹣1,0)
C.(0,1)
D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}的前n项和为Sn , 若对于任意的正整数n都有Sn=2an﹣3n.
(1)设bn=an+3,求证:数列{bn}是等比数列,并求出{an}的通项公式;
(2)求数列{nan}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某次测验中,有6位同学的平均成绩为75分.用xn表示编号为n(n=1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:

编号n

1

2

3

4

5

成绩xn

70

76

72

70

72


(1)求第6位同学的成绩x6 , 及这6位同学成绩的标准差s;
(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解学生的身体状况,某校随机抽取了一批学生测量体重.经统计,这批学生的体重数据(单位:千克)全部介于45至70之间.将数据分成以下5组:第1组[45,50),第2组[50,55),第3组[55,60),第4组[60,65),第5组[65,70],得到如图所示的频率分布直方图.现采用分层抽样的方法,从第3,4,5组中随机抽取6名学生做初检.

(1)求每组抽取的学生人数;
(2)若从6名学生中再次随机抽取2名学生进行复检,求这2名学生不在同一组的概率.

查看答案和解析>>

同步练习册答案