精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax+ka-x,其中a>0且a≠1,k为常数,若f(x)在R上既是奇函数,又是减函数,则a+k的取值范围是
(-1,0)
(-1,0)
分析:由f(x)在R上是奇函数,可得f(0)=0,可求得k=-1,于是f(x)=ax-a-x,由f(x)=ax-a-x是减函数,由f′(x)<0可求
a的取值范围,从而可求得a+k的取值范围.
解答:解:∵f(x)在R上是奇函数,
∴f(0)=0,即f(0)=1+k,
∴k=-1;
∴f(x)=ax-a-x
又f(x)=ax-a-x是减函数,
∴f′(x)<0,即axlna+a-xlna=(ax+a-x)lna<0,由于ax+a-x>0,
∴lna<0,
∴0<a<1.
∴a+k=a-1∈(-1,0).
故答案为:(-1,0).
点评:本题考查奇偶性与单调性的综合,难点在用导数研究f(x)=ax-a-x是减函数,确定a的范围,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案