精英家教网 > 高中数学 > 题目详情
4.与极坐标(-2,$\frac{π}{6}}$)不表示同一点的极坐标是(  )
A.(2,$\frac{7}{6}π}$)B.(2,-$\frac{7}{6}π}$)C.(-2,-$\frac{11π}{6}}$)D.(-2,$\frac{13}{6}π}$)

分析 利用极坐标的表示方法即可得出.

解答 解:与极坐标(-2,$\frac{π}{6}}$)不表示同一点的极坐标是$(2,-\frac{7π}{6})$.
故选:B.

点评 本题考查了极坐标的表示方法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.如图,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠BCD=120°,四边形BFED为矩形,平面BFED⊥平面ABCD,BF=1
(Ⅰ)求证:AD⊥平面BFED;
(Ⅱ)点P是线段EF上运动,设平面PAB与平面ADE成锐角二面角为θ,试求θ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.若实数x、y、m满足|x-m|>|y-m|,则称x比y远离m.
(1)若x2-1比1远离0,求x的取值范围;
(2)对任意两个不相等的正数a、b,证明:a3+b3比a2b+ab2远离2ab$\sqrt{ab}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在矩形ABCD中,AB=5,BC=2,现截去一个△PCQ,使P、Q分别落在边BC、CD上,且△PCQ的周长为8,设PC=x∈(0,2],CQ=t.
(1)试用x表示t=f(x);
(2)求矩形ABCD剩下部分面积的最小值?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在三棱柱ABC-A1B1C1中,已知∠BAC=90°,AB=AC=1,BB1=2,∠ABB1=60°.
(1)证明:AB⊥B1C;
(2)若B1C=2,求二面角B1-CC1-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.从气球A上测得正前方的河流的两岸B,C的俯角分别为α,β,如果这时气球的高是100米,则河流的宽度BC为(  )
A.$\frac{100(tanβ-tanα)}{tanαtanβ}$B.$\frac{100tanαtanβ}{tanα-tanβ}$
C.$\frac{100(tanα+tanβ)}{tanαtanβ}$D.$\frac{100tanαtanβ}{tanα+tanβ}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=x-m(x+1)ln(x+1),其中m>0.
(Ⅰ)求f(x)的极大值;
(Ⅱ)当m=1时,若直线y=2t与函数f(x)在[-$\frac{1}{2}$,1]上的图象有交点,求实数t的取值范围;
(Ⅲ)当a>b>0时,试证明:(1+a)b<(1+b)a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某四面体的三视图如图所示,则该四面体的体积为(  )
A.4$\sqrt{3}$B.$\frac{4\sqrt{3}}{3}$C.8$\sqrt{3}$D.$\frac{8\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设函数f(x)=x3+ax2+b(a,b∈R),当x=$\frac{4}{3}$时,f(x)取极小值0,则实数b=$\frac{32}{27}$.

查看答案和解析>>

同步练习册答案