精英家教网 > 高中数学 > 题目详情

一块形状为直角三角形的铁皮,直角边长分别是40cm与60cm,现在将它剪成一个矩形,并以此三角形的直角为矩形的一个角,问怎样剪法,才能使剩下的残料最少?并求出此时的残料面积.

解:如图,AC=40cm,BC=60cm,设CD=x,CF=y,则
∴y=40-,…(2分)
则剩下的残料面积:
S=(0<x<60)…(10分)
∴当x=30cm,y=20cm时剩下的残料面积为600cm2.…(12分)
分析:表示出矩形的长与宽,进而可求剩下的残料面积,利用配方法,求出剩下的残料最少面积.
点评:本题重点考查二次函数模型的构建,考查配方法求函数的最值,解题的关键是构建二次函数模型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一块形状为直角三角形的铁皮,直角边长分别是60cm与80cm,现在将它剪成一个矩形,并以此三角形的直角为矩形的一个角,求出矩形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

一块形状为直角三角形的铁皮,直角边长分别为40cm和60cm,现将它剪成一个矩形,并以此三角形的直角为矩形的一个角,问怎样剪才能使剩下的残料最少?

查看答案和解析>>

科目:高中数学 来源: 题型:

一块形状为直角三角形的铁皮,直角边长分别是40cm与60cm,现在将它剪成一个矩形,并以此三角形的直角为矩形的一个角,问怎样剪法,才能使剩下的残料最少?并求出此时的残料面积.

查看答案和解析>>

科目:高中数学 来源:2014届山西省高一第二学期第二次月考数学试卷(解析版) 题型:解答题

一块形状为直角三角形的铁皮,直角边长分别为40cm与60cm现将它剪成一个矩形,并以此三角形的直角为矩形的一个角,问怎样剪法,才能使剩下的残料最少?

 

查看答案和解析>>

科目:高中数学 来源:2014届度河南省许昌六校高一上学期第一次联考数学试卷 题型:解答题

一块形状为直角三角形的铁皮,直角边长分别是40cm与60cm,现在将它剪成一个矩形,并以此三角形的直角为矩形的一个角,问怎样剪法,才能使剩下的残料最少? 并求出此时的残料面积。

 

查看答案和解析>>

同步练习册答案