精英家教网 > 高中数学 > 题目详情
17.设定义域为R的函数f(x)=$\left\{\begin{array}{l}{\frac{1}{|x-1|}(x≠1)}\\{1(x=1)}\end{array}\right.$,若关于x的方程f2(x)+bf(x)+c=0有5个不同的实数解,则b+c值为(  )
A.0B.1C.-1D.不能确定

分析 作函数f(x)=$\left\{\begin{array}{l}{\frac{1}{|x-1|}(x≠1)}\\{1(x=1)}\end{array}\right.$的图象,从而可得方程x2+bx+c=0有2个不同的实数解1,x1,从而解得.

解答 解:作函数f(x)=$\left\{\begin{array}{l}{\frac{1}{|x-1|}(x≠1)}\\{1(x=1)}\end{array}\right.$的图象,
∵关于x的方程f2(x)+bf(x)+c=0有5个不同的实数解,
∴方程x2+bx+c=0有2个不同的实数解1,x1
∴1+x1=-b,1•x1=c,
故b+c=-1-x1+x1=-1,
故选:C.

点评 本题考查了函数方程的转化思想和数形结合的思想应用及根与系数的关系应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{6}}{3}$,短轴的一个端点到右焦点的距离为$\sqrt{3}$,过点(-1,0)且斜率为1的直线l与椭圆交于不同的两点A,B.
(1)求椭圆的标准方程;
(2)求弦|AB|的中点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)=$\frac{1}{x}$在区间[3,5]上值域为[$\frac{1}{5}$,$\frac{1}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合A={a2,a+1,-3},B={a-3,2a-1,a2+1},若A∩B={-3},则A∪B=(  )
A.{-4,-3,0,2,3}B.{-3,-2,0,1,3}C.{-3,-1,0,1,2}D.{-4,-3,0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若椭圆$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{m}$=1的离心率为$\frac{1}{2}$,则m=(  )
A.$\frac{9}{4}$B.4C.$\frac{9}{4}$或4D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{4}$=1(a>2),圆O:x2+y2=a2+4,椭圆C的左、右焦点分别为F1,F2过椭圆上一点P和原点O作直线l交圆O于M,N两点,若|PF1|•|PF2|=6,则|PM|•|PN|的值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.若f(x)为偶函数,当x>0时,f(x)=-x2+x,求:当x<0时,f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数f(x)=$\frac{1}{ln(x+1)}$的定义域为(-1,0)∪(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如果a和b是异面直线,直线a∥c,那么直线b与c的位置关系是(  )
A.相交B.异面C.平行D.相交或异面

查看答案和解析>>

同步练习册答案