精英家教网 > 高中数学 > 题目详情

写出ab0的一个充分非必要条件_________.

 

答案:a>0且b>0
提示:

充分非必要条件是充分但不是必要的条件

 


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的某个焦点为F,双曲线G:
x2
a2
-
y2
b2
=1
(a,b>0)的某个焦点为F.
(1)请在
 
上补充条件,使得椭圆的方程为
x2
3
+y2=1
;友情提示:不可以补充形如a=
3
,b=1
之类的条件.
(2)命题一:“已知抛物线y2=2px(p>0)的焦点为F,定点P(m,n)满足n2-2pm>0,以PF为直径的圆交y轴于A、B,则直线PA、PB与抛物线相切”.命题中涉及了这么几个要素:对于任意抛物线P(x,y),定点P,以PF为直径的圆交F(0,1)轴于A、B,PA、PB与抛物线相切.试类比上述命题分别写出一个关于椭圆C和双曲线G的类似正确的命题;
(3)证明命题一的正确性.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,已知焦距为4的椭圆C:
x2
a2
+
y2
b2
=1  (a>b>0)
的左、右顶点分别为A、B,椭圆C的右焦点为F,过F作一条垂直于x轴的直线与椭圆相交于R、S,若线段RS的长为
10
3

(1)求椭圆C的方程;
(2)设Q(t,m)是直线x=9上的点,直线QA、QB与椭圆C分别交于点M、N,求证:直线MN
必过x轴上的一定点,并求出此定点的坐标;
(3)实际上,第(2)小题的结论可以推广到任意的椭圆、双曲线以及抛物线,请你对抛物线y2=2px(p>0)写出一个更一般的结论,并加以证明.

查看答案和解析>>

科目:高中数学 来源:数学教研室 题型:022

写出ab0的一个充分非必要条件_________.

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的某个焦点为F,双曲线G:
x2
a2
-
y2
b2
=1
(a,b>0)的某个焦点为F.
(1)请在______上补充条件,使得椭圆的方程为
x2
3
+y2=1
;友情提示:不可以补充形如a=
3
,b=1
之类的条件.
(2)命题一:“已知抛物线y2=2px(p>0)的焦点为F,定点P(m,n)满足n2-2pm>0,以PF为直径的圆交y轴于A、B,则直线PA、PB与抛物线相切”.命题中涉及了这么几个要素:对于任意抛物线P(x,y),定点P,以PF为直径的圆交F(0,1)轴于A、B,PA、PB与抛物线相切.试类比上述命题分别写出一个关于椭圆C和双曲线G的类似正确的命题;
(3)证明命题一的正确性.

查看答案和解析>>

同步练习册答案