【题目】函数满足如下四个条件:
①定义域为;
②;
③当时,;
④对任意满足.
根据上述条件,求解下列问题:
⑴求及的值.
⑵应用函数单调性的定义判断并证明的单调性.
⑶求不等式的解集.
科目:高中数学 来源: 题型:
【题目】《中国诗词大会》节目组决定把《将进酒》、《山居秋暝》、《望岳》、《送杜少府之任蜀州》和另外确定的两首诗词排在后六场,并要求《将进酒》与《望岳》相邻,且《将进酒》排在《望岳》的前面,《山居秋暝》与《送杜少府之任蜀州》不相邻,且均不排在最后,则后六场开场诗词的排法有_____________种.(用数字作答)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,函数F(x)=min{2|x1|,x22ax+4a2},
其中min{p,q}=
(Ⅰ)求使得等式F(x)=x22ax+4a2成立的x的取值范围;
(Ⅱ)(ⅰ)求F(x)的最小值m(a);
(ⅱ)求F(x)在区间[0,6]上的最大值M(a).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知O为坐标原点,椭圆C:的左、右焦点分别为F1,F2,右顶点为A,上顶点为B,若|OB|,|OF2|,|AB|成等比数列,椭圆C上的点到焦点F2的最短距离为.
(1)求椭圆C的标准方程;
(2)设T为直线x=-3上任意一点,过F1的直线交椭圆C于点P,Q,且,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于两条平行直线、(在下方)和图象有如下操作:将图象在直线下方的部分沿直线翻折,其余部分保持不变,得到图象;将图象在直线上方的部分沿直线翻折,其余部分保持不变,得到图象:再将图在直线下方的部分沿直线翻折,其余部分保持不变,得到图象;再将图象在直线上方的部分沿直线翻折,其余部分保持不变,得到图象;以此类推…;直到图象上所有点均在、之间(含、上)操作停止,此时称图象为图象关于直线、的“衍生图形”,线段关于直线、的“衍生图形”为折线段.
(1)直线型
平面直角坐标系中,设直线,直线
①令图象为的函数图象,则图象的解析式为
②令图像为的函数图象,请你画出和的图象
③若函数的图象与图象有且仅有一个交点,且交点在轴的左侧,那么的取值范围是_______.
④请你观察图象并描述其单调性,直接写出结果_______.
⑤请你观察图象并判断其奇偶性,直接写出结果_______.
⑥图象所对应函数的零点为_______.
⑦任取图象中横坐标的点,那么在这个变化范围中所能取到的最高点的坐标为(_______,_______),最低点坐标为(_______,_______).
⑧若直线与图象有2个不同的交点,则的取值范围是_______.
⑨根据函数图象,请你写出图象的解析式_______.
(2)曲线型
若图象为函数的图象,
平面直角坐标系中,设直线,直线,
则我们可以很容易得到所对应的解析式为.
①请画出的图象,记所对应的函数解析式为.
②函数的单调增区间为_______,单调减区间为_______.
③当时候,函数的最大值为_______,最小值为_______.
④若方程有四个不同的实数根,则的取值范围为_______.
(3)封闭图形型
平面直角坐标系中,设直线,直线
设图象为四边形,其顶点坐标分别为,,,,四边形关于直线、的“衍生图形”为.
①的周长为_______.
②若直线平分的周长,则_______.
③将沿右上方方向平移个单位,则平移过程中所扫过的面积为_______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点.用,分别表示乌龟和兔子所行的路程,为时间,则与故事情节相吻合的是( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=.
(1)判断函数f(x)的奇偶性;
(2)判断并用定义证明函数f(x)在其定义域上的单调性.
(3)若对任意的t1,不等式f()+f()<0恒成立,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在平面直角坐标系中,椭圆C的参数方程为 (θ为参数).
(1)以原点为极点,x轴的正半轴为极轴建立极坐标系,求椭圆C的极坐标方程;
(2)设M(x,y)为椭圆C上任意一点,求x+2y的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com