精英家教网 > 高中数学 > 题目详情

【题目】如图,在正方体ABCD﹣A1B1C1D1的棱长为a,若E为棱AB的中点,

求四棱锥B1﹣BCDE的体积

求证:面B1DC⊥面B1DE

【答案】见解析.

【解析】试题分析:

①由正方体的性质可得B1B⊥平面BEDC结合棱锥的体积公式计算可得四棱锥B1BCDE的体积V=

②取B1D的中点O,设BC1B1C=F,连接OF由题意可得四边形OEBF是平行四边形,结合正方体的性质可得OEDCOEB1COE⊥平面B1DC结合面面垂直的判断定理可得平面B1DC⊥面B1DE

试题解析:

①由正方体的性质可得B1B⊥平面BEDC

∴四棱锥B1BCDE的体积V=S梯形BCDEB1B=a+aaa=

②取B1D的中点O,设BC1B1C=F,连接OF

OF分别是B1DB1C的中点,∴OFDC,且OF=DC

又∵EAB中点,∴EBDC,且EB=DC

OFEBOF=EB,即四边形OEBF是平行四边形,∴OEBF

DC⊥平面BCC1B1 BC1平面BCC1B1 BC1DCOEDC

BC1B1COEB1C,又∵DC平面B1DCB1C平面B1DCDCB1C=C

OE⊥平面B1DC,又∵OE平面B1DE∴平面B1DC⊥面B1DE

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲、乙两人都准备于下午12:00-13:00之间到某车站乘某路公交车外出,设在12:00-13:00之间有四班该路公交车开出,已知开车时间分别为12:20,12:30,12:40,13:00,分别求他们在下述情况下坐同一班车的概率.

(1)他们各自选择乘坐每一班车是等可能的;

(2)他们各自到达车站的时刻是等可能的(有车就乘).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以坐标原点为极点,x轴的正半轴为极轴的极坐标系中,曲线C1的极坐标方程为ρ=2sinθ,正方形ABCD的顶点都在C1上,且依次按逆时针方向排列,点A的极坐标为( ).
(1)求点C的直角坐标;
(2)若点P在曲线C2:x2+y2=4上运动,求|PB|2+|PC|2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的可导函数f(x),其导函数记为f'(x),满足f(x)+f(2﹣x)=(x﹣1)2 , 且当x≤1时,恒有f'(x)+2<x.若 ,则实数m的取值范围是(
A.(﹣∞,1]
B.
C.[1,+∞)
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知M是正四面体ABCD棱AB的中点,N是棱CD上异于端点C,D的任一点,则下列结论中,正确的个数有(  )

1MN⊥AB

(2)若N为中点,则MN与AD所成角为60°;

(3)平面CDM平面ABN;

(4)不存在点N,使得过MN的平面与AC垂直.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,直四棱柱ABCD﹣A1B1C1D1内接于半径为 的半球O,四边形ABCD为正方形,则该四棱柱的体积最大时,AB的长是(

A.1
B.
C.
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正四棱锥P﹣ABCD中,底面ABCD的边长为4,PD=4,E为PA的中点,

(1)求证:平面EBD⊥平面PAC;
(2)求直线BE与平面PBD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲罐中有个红球,个白球和个黑球,乙罐中有个红球,个白球和个黑球。先从甲罐中随机取出一球放入乙罐,分别以表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以表示由乙罐取出的球是红球的事件,则下列结论中正确的是________(写出所有正确结论的编号)。

事件与事件相互独立;

是两两互斥的事件;

的值不能确定,因为它与中哪一个发生有关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥 (图1)的三视图如图2所示,为正三角形,垂直底面,俯视图是直角梯形.

图1 图2

(1)求正视图的面积;

(2)求四棱锥的体积;

(3)求证:平面.

查看答案和解析>>

同步练习册答案