精英家教网 > 高中数学 > 题目详情
19.已知sinθ=$\frac{m-3}{m+5}$,cosθ=$\frac{4-2m}{m+5}$(m≠0),则tanθ=-$\frac{5}{12}$.

分析 由已知利用同角三角函数基本关系式可求($\frac{m-3}{m+5}$)2+($\frac{4-2m}{m+5}$)2=1,进而整理即可解得m=8,利用同角三角函数基本关系式可求tanθ的值.

解答 解:∵sinθ=$\frac{m-3}{m+5}$,cosθ=$\frac{4-2m}{m+5}$(m≠0),
∴($\frac{m-3}{m+5}$)2+($\frac{4-2m}{m+5}$)2=1,整理即可解得:m=8,
∴tanθ=$\frac{sinθ}{cosθ}$=$\frac{m-3}{4-2m}$=$\frac{8-3}{4-2×8}$=-$\frac{5}{12}$.
故答案为:-$\frac{5}{12}$.

点评 本题主要考查了同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知向量$\overrightarrow{a}$=(1,x-1),$\overrightarrow{b}$=(y,2),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则xy的最大值为(  )
A.-$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=$\frac{6}{x}$-log3x,在下列区间中,包含 f(x)零点的区间是(  )
A.(0,1)B.(3,9)C.(1,3)D.(9,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.集合A={x||x|≤4,x∈R},B={x|x<a},则“A⊆B”是“a>5”的必要不充分条件(在“充要”,“充分不必要”,“必要不充分”,“既不充分也不必要”中选择一项填空)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知复数z1=m-2i,复数z2=1-ni,其中i是虚数单位,m,n为实数.
(1)若m=1,n=-1,求|z1+z2|的值;
(2)若z1=(z22,求m,n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合A={1,2,3,4},B={x|-2≤3x-2≤10,x∈R},则A∩B=(  )
A.{1}B.{1,2,3,4}C.{1,3}D.{1,4}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.点B在y轴上运动,点C在直线l:x-y-2=0上运动,若A(2,3),则△ABC的周长的最小值为3$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=x2•f′(2)+3x,则f′(2)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.化简:$\frac{5}{6}{a^{\frac{1}{2}}}{b^{-\frac{1}{3}}}×(-3{a^{-\frac{1}{6}}}{b^{-1}})÷{(4{a^{\frac{2}{3}}}{b^{-3}})^{\frac{1}{2}}}$=-$\frac{5}{4}$b${\;}^{\frac{1}{6}}$.

查看答案和解析>>

同步练习册答案