精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)求曲线在点(1,f(1))处的切线方程;

2)求经过点A1,3)的曲线的切线方程.

【答案】(1)2x-y+1=0(2)x-y+2=0或2x-y+1=0

【解析】试题分析:1求出,求出的值可得切点坐标,求出的值,可得切线斜率,利用点斜式可得曲线在点处的切线方程;(2设切点坐标为 求出的值,可得切线斜率,利用点斜式可得曲线在点的切线方程,将代入切线方程可求得的值,从而可得结果.

试题解析:(1)函数f(x)=x3﹣x2+x+2的导数为f′(x)=3x2﹣2x+1,

可得曲线f(x)在点(1,f(1))处的切线斜率为3﹣2+1=2,

切点为(1,3),

即有曲线f(x)在点(1,f(1))处的切线方程为y﹣3=2(x﹣1),

即为2x﹣y+1=0;

(2)设切点为(m,n),可得n=m3﹣m2+m+2,

f(x)的导数f′(x)=3x2﹣2x+1,

可得切线的斜率为3m2﹣2m+1,

切线的方程为y﹣(m3﹣m2+m+2)=(3m2﹣2m+1)(x﹣m),

由切线经过点(1,3),可得

3﹣(m3﹣m2+m+2)=(3m2﹣2m+1)(1﹣m),

化为m(m﹣1)2=0,解得m=01.

则切线的方程为y﹣2=xy﹣3=2(x﹣1),

即为y=x+2y=2x+1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲、乙两名射手在一次射击中得分为两个相互独立的随机变量ξη,已知甲、乙两名射手在每次射击中射中的环数大于6且甲射中10,9,8,7环的概率分别为0.5,3aa,0.1,乙射中10,9,8环的概率分别为0.3,0.3,0.2.

(1)ξη的分布列;

(2)ξη的数学期望与方差并以此比较甲、乙的射击技术.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】x、y满足约束条件 ,若z=y﹣ax取得最大值的最优解不唯一,则实数a的值为(
A. 或﹣1
B.2或
C.2或1
D.2或﹣1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个盒子装有六张卡片,上面分别写着如下六个函数:

(I)从中任意拿取张卡片,若其中有一张卡片上写着的函数为奇函数,在此条件下,求两张卡片上写着的函数相加得到的新函数为奇函数的概率;

(II)现从盒子中逐一抽取卡片,且每次取出后均不放回,若取到一张写有偶函数的卡片则停止抽取,否则继续进行,求抽取次数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记max{m,n}= ,设F(x,y)=max{|x2+2y+2|,|y2﹣2x+2|},其中x,y∈R,则F(x,y)的最小值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 图象过点(﹣1,2),且在该点处的切线与直线x﹣5y+1=0垂直.
(1)求实数b,c的值;
(2)对任意给定的正实数a,曲线y=f(x)上是否存在两点P,Q,使得△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设圆上的点A(2,3)关于直线x+2y=0的对称点仍在圆上,且直线xy+1=0被圆截得的弦长为2,求圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l1过点A(﹣1,0),且斜率为k,直线l2过点B(1,0),且斜率为﹣2k,其中k≠0,又直线l1与l2交于点M.
(1)求动点M的轨迹方程;
(2)若过点N( ,1)的直线l交动点M的轨迹于C、D两点,且N为线段CD的中点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=cos x,对任意的实数t,记f(x)在[t,t+1]上的最大值为M(t),最小值为m(t),则函数h(t)=M(t)﹣m(t)的值域为

查看答案和解析>>

同步练习册答案