精英家教网 > 高中数学 > 题目详情

(本题满分为12分)
已知函数的图像过坐标原点,且在点处的切线的斜率是
(1)求实数的值;
(2)求在区间上的最大值;
(3)对任意给定的正实数,曲线上是否存在两点,使得是以为直角顶点的直角三角形,且此三角形斜边的中点在轴上?请说明理由.

(1)(2)当,即时,上的最大值为2;当,即时,上的最大值为 .(3)存在。

解析试题分析:解:
(I)当时,. (1分)
依题意,得 即,解得.    (3分)
(II)由(1)知,
①当
                                     (4分)
变化时的变化情况如下表:



0




-
0
+
0
-

单调递减
极小值
单调递增
极大值
单调递减
 

所以上的最大值为.                                   (6分)
②当时,
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数
(1)求函数的单调区间
(2)设函数=,求证:当时,有成立

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数在区间上的最大、最小值;
(2)求证:在区间上,函数的图象在函数的图象的下方.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线过点P(1,3),且在点P处的切线
恰好与直线垂直.求 (Ⅰ) 常数的值; (Ⅱ)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数(e为自然对数的底数).
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)若对于任意,不等式恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
,点P(,0)是函数的图象的一个公共点,两函数的图象在点P处有相同的切线.
(1)用表示a,b,c;
(2)若函数在(-1,3)上单调递减,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数的零点的集合为{0,1},且是f(x)的一个极值点。
(1)求的值;
(2)试讨论过点P(m,0)与曲线y=f(x)相切的直线的条数。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数(其中e为自然对数)
(1)求F(x)="h" (x)的极值。
(2)设 (常数a>0),当x>1时,求函数G(x)的单调区间,并在极值存在处求极值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知函数.
(1)当时,求证:函数上单调递增;
(2)若函数有三个零点,求的值;
(3)若存在,使得,试求的取值范围。

查看答案和解析>>

同步练习册答案