精英家教网 > 高中数学 > 题目详情
4.已知圆C:x2+y2=4,直线l:ax+y+2a=0,当直线l与圆C相交于A,B两点,且|AB|=2$\sqrt{2}$时,求直线l的方程.

分析 求出圆心到直线的距离,利用点到直线的距离公式,即可得出结论.

解答 解:圆C:x2+y2=4,圆心为(0,0),半径为2,
∵|AB|=2$\sqrt{2}$,
∴圆心到直线的距离为$\sqrt{4-2}$=$\sqrt{2}$,
∴$\frac{|2a|}{\sqrt{{a}^{2}+1}}$=$\sqrt{2}$
解得a=1或a=-1.…(8分)
故所求直线方程为x+y+2=0或x-y+2=0.…(10分)

点评 本题考查直线和圆的方程的应用,考查点到直线的距离公式,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知数列{an}的前n项和为Sn,且满足:a1=1,a2=2,Sn+1=an+2-an+1(n∈N*),若不等式λSn>an恒成立,则实数λ的取值范围是λ>1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知中心在原点,焦点在坐标轴上的椭圆E的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)它的离心率为$\frac{{\sqrt{3}}}{3}$,一个焦点是(-1,0),过直线x=3上一点M引椭圆E的两条切线,切点分别是A和B.
(Ⅰ)求椭圆E的方程;
(Ⅱ)若在椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上的点(x0,y0)处的切线方程是$\frac{{x}_{0}x}{{a}^{2}}$+$\frac{{y}_{0}y}{{b}^{2}}$=1.求证:直线AB恒过定点,并求出定点的坐标;
(Ⅲ)记点C为(Ⅱ)中直线AB恒过的定点,问是否存在实数λ,使得$|{\overrightarrow{AC}}|+|{\overrightarrow{BC}}|=λ|{\overrightarrow{AC}}|•|{\overrightarrow{BC}}|$成立,若成立求出λ的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.从某校高一年级1000名学生中随机抽取100名测量身高,测量后发现被抽取的学生身高全部介于155厘米到195厘米之间,将测量结果分为八组:第一组[155,160),第二组[160,165),…,第八组[190,195),得到频率分布直方图如图所示.
(Ⅰ)计算第三组的样本数;并估计该校高一年级1000名学生中身高在170厘米以下的人数;
(Ⅱ)估计被随机抽取的这100名学生身高的中位数、平均数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图是某几何体的三视图且a=b,则该几何体主视图的面积为(  )
A.$\sqrt{6}$B.$\frac{3}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{15}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设a,b,c是三条不同的直线,α,β,γ是三个不同的平面,则下列命题正确的是(  )
A.若α⊥β,α⊥γ,则β⊥γB.若a,b与c所成的角相等,则a∥b
C.若α⊥α,α∥β,则α⊥βD.若a∥b,a?α,则b∥α

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,圆锥的轴截面SAB是正三角形,O为底面中心,M为线段SO中点,动点P在圆锥底面内(包括圆周),若AM⊥MP,则点P的轨迹为(  )
A.线段B.C.椭圆D.抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若等边三角形ABC的边长为4,E是中线BD的中点,则$\overrightarrow{AE}$•$\overrightarrow{EC}$=(  )
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若函数f(x)=|asinx+bcosx-1|+|bsinx-acosx|(a,b∈R)的最大值为11,则a2+b2=50.

查看答案和解析>>

同步练习册答案