精英家教网 > 高中数学 > 题目详情
11.下列命题中:
(1)a=4,A=30°,若△ABC唯一确定,则0<b≤4.
(2)若点(1,1)在圆x2+y2+mx-y+4=0外,则m的取值范围是(-5,+∞);
(3)若曲线$\frac{{x}^{2}}{4+k}$+$\frac{{y}^{2}}{1-k}$=1表示双曲线,则k的取值范围是(1,+∞]∪(-∞,-4];
(4)将函数y=cos(2x-$\frac{π}{3}$)(x∈R)的图象向左平移$\frac{π}{3}$个单位,得到函数y=cos2x的图象.
(5)已知双曲线方程为x2-$\frac{{y}^{2}}{2}$=1,则过点P(1,1)可以作一条直线l与双曲线交于A,B两点,使点P是线段AB的中点.正确的是(2),(5)(填序号)

分析 由正弦定理求得sinB,举例说明(1)错误;把点的坐标代入圆的方程说明(2)正确;由双曲线的方程可得关于k的不等式,求得k值说明(3)错误;由函数图形的平移可得(4)错误;利用点差法求出直线l的方程说明(5)正确.

解答 解:对于(1),由$\frac{a}{sinA}=\frac{b}{sinB}$,得sinB=$\frac{b}{a}sinA=\frac{b}{4}×\frac{1}{2}=\frac{b}{8}$.
当b=8时,sinB=1,B=90°,C=60°,△ABC唯一确定,故(1)错误;
对于(2),点(1,1)在圆x2+y2+mx-y+4=0外,则12+12+m-1+4>0,即m>-5,故(2)正确;
对于(3),若曲线$\frac{{x}^{2}}{4+k}$+$\frac{{y}^{2}}{1-k}$=1表示双曲线,则(4+k)(1-k)<0,解得k>1或k<-4,
即k的取值范围是(1,+∞)∪(-∞,-4),故(3)错误;
对于(4),将函数y=cos(2x-$\frac{π}{3}$)(x∈R)的图象向左平移$\frac{π}{3}$个单位,
得到函数图象的解析式为y=cos[2(x+$\frac{π}{3}$)$-\frac{π}{3}$]=cos(2x+$\frac{π}{3}$),故(4)错误;
对于(5),设A(x1,y1),B(x2,y2),则${{x}_{1}}^{2}-\frac{{{y}_{1}}^{2}}{2}=1$,${{x}_{2}}^{2}-\frac{{{y}_{2}}^{2}}{2}=1$,两式作差得:
$({x}_{1}-{x}_{2})({x}_{1}+{x}_{2})=\frac{1}{2}({y}_{1}-{y}_{2})({y}_{1}+{y}_{2})$,∴$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}=\frac{2({x}_{1}+{x}_{2})}{{y}_{1}+{y}_{2}}$,∴kAB=2,此时直线方程为y-1=2(x-2),
即y=2x-3,联立$\left\{\begin{array}{l}{y=2x-3}\\{{x}^{2}-\frac{{y}^{2}}{2}=1}\end{array}\right.$,得2x2-12x+11=0,△=144-88=56>0,故(5)正确.
∴正确命题的序号是(2),(5).
故答案为:(2),(5).

点评 本题考查命题的真假判断与应用,考查了三角形形状的判定,考查双曲线的简单性质及直线与双曲线的位置关系,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知:函数f(x)=x2,g(x)=2x-a,若对任意的x1∈[-1,2],存在x2∈[0,2]使得f(x1)>g(x2),则实数a的取值范围a>1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设等比数列{an}的前n项和为Sn,若S5、S4、S6成等差数列,则数列{an}的公比q的值等于-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在平行四边形OABC中,过点C(1,3)做CD⊥AB,垂足为点D,试求CD所在直线的一般式方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在几何体ABCDE中,∠BAC=90°,DC⊥平面ABC,EB⊥平 面ABC,F是BC的中点,AB=AC
(1)求证:DC∥平面ABE;
(2)求证:AF⊥平面BCDE.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知复数z1=3-i,|z2|=2,则|z1+z2|的最大值是(  )
A.$\sqrt{10}-\sqrt{2}$B.$\sqrt{10}+\sqrt{2}$C.$\sqrt{10}$+2D.$\sqrt{10}-2$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.△ABC的三个内角A、B、C的对边分别是a、b、c,如果a2=b(b+c).那么A-2B=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知一个圆经过A(3,3),B(2,4)两点,且圆心C在直线$y=\frac{1}{2}x+2$上,
(1)求圆C的标准方程;
(2)若直线y=kx+2与圆C有两个不同的交点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知三点P1(1,1,0),P2(0,1,1)和P3(1,0,1),O是坐标原点,则|$\overrightarrow{O{P}_{1}}$+$\overrightarrow{O{P}_{2}}$+$\overrightarrow{O{P}_{3}}$|=(  )
A.2B.4C.$2\sqrt{3}$D.12

查看答案和解析>>

同步练习册答案