精英家教网 > 高中数学 > 题目详情

【题目】设椭圆的左焦点为,过的直线交于两点,点的坐标为.

1)若点也是顶点为原点的抛物线的焦点,求抛物线的方程;

2)当轴垂直时,求直线的方程;

3)设为坐标原点,证明:.

【答案】(1);(2);(3)证明见解析.

【解析】

(1)由抛物线的焦点为即可求得方程.
(2)求得的方程再代入椭圆计算坐标即可.
(3)分支线斜率为0,斜率不存在与一般斜率三种情况进行讨论.又由可转证,联立方程代入韦达定理化简即可.

(1)由题设抛物线,且焦点为,故抛物线方程.

(2)由已知得,的方程为.代入椭圆方程可得,点的坐标为.所以的方程为.

(3)当轴重合时,.

轴垂直时,的垂直平分线,所以.

轴不重合也不垂直时,设的方程为,,,则,,直线,的斜率之和为.

,.

代入.所以,,.

.

从而,故,的倾斜角互补,所以.

综上,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论的单调性并指出相应单调区间;

2)若,设是函数的两个极值点,若,且恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

(1)若上恒成立,求实数的取值范围;

(2)证明:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据报道,全国很多省市将英语考试作为高考改革的重点,一时间英语考试该如何改革引起广泛关注,为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3600人进行调查,就是否取消英语听力问题进行了问卷调查统计,结果如下表:

态度

调查人群

应该取消

应该保留

无所谓

在校学生

2100

120

社会人士

600

(1)已知在全体样本中随机抽取人,抽到持应该保留态度的人的概率为,现用分层抽样的方法在所有参与调查的人中抽取人进行问卷访谈,问应在持无所谓态度的人中抽取多少人?

(2)在持应该保留态度的人中,用分层抽样的方法抽取人,再平均分成两组进行深入交流,求第一组中在校学生人数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族中的成员仅以自驾或公交方式通勤.分析显示:当)的成员自驾时,自驾群体的人均通勤时间为(单位:分钟),而公交群体的人均通勤时间不受影响,恒为分钟,试根据上述分析结果回答下列问题:

(1)当在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?

(2)求该地上班族的人均通勤时间的表达式;讨论的单调性,并说明其实际意义.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数[07]上有16两个零点,且函数与函数都是偶函数,则[02019]上的零点至少有( )个

A.404B.406C.808D.812

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两动圆),把它们的公共点的轨迹记为曲线,若曲线轴的正半轴的交点为,且曲线上的相异两点满足:.

1)求曲线的轨迹方程;

2)证明直线恒经过一定点,并求此定点的坐标;

3)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有两个零点 ,则下面说法正确的是( )

A. B. C. D. 有极小值点,且

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出.现有抛物线,如图一平行于轴的光线射向抛物线,经两次反射后沿平行轴方向射出,若两平行光线间的最小距离为4,则该抛物线的方程为__________

查看答案和解析>>

同步练习册答案