精英家教网 > 高中数学 > 题目详情
13.an+1=$\frac{n}{n+1}$an+1,且a1=1,则an=$\frac{n+1}{2}$.

分析 由已知结合数列递推式求出数列前几项,猜测、归纳出数列的通项公式,然后利用数学归纳法证明.

解答 解:由an+1=$\frac{n}{n+1}$an+1,且a1=1得:
${a}_{2}=\frac{1}{2}×1+1=\frac{3}{2}$,${a}_{3}=\frac{2}{3}{a}_{2}+1=\frac{2}{3}×\frac{3}{2}+1=2=\frac{4}{2}$,
${a}_{4}=\frac{3}{4}{a}_{3}+1=\frac{3}{4}×2+1=\frac{5}{2}$,${a}_{5}=\frac{4}{5}{a}_{4}+1=\frac{4}{5}×\frac{5}{2}+1=\frac{6}{2}$,

由此猜测:${a}_{n}=\frac{n+1}{2}$.
下面利用数学归纳法证明:
${a}_{1}=1=\frac{2}{2}=\frac{1+1}{2}$,命题成立;
假设n=k(k∈N*且k≥1)命题成立,即${a}_{k}=\frac{k+1}{2}$,
则当n=k+1时,${a}_{k+1}=\frac{k}{k+1}{a}_{k}+1=\frac{k}{k+1}•\frac{k+1}{2}+1=\frac{k+2}{2}$=$\frac{(k+1)+1}{2}$,命题成立.
综上,对于任意n∈N*,都有${a}_{n}=\frac{n+1}{2}$成立.
故答案为:$\frac{n+1}{2}$.

点评 本题考查数列递推式,考查了利用猜测、归纳的方法求数列的通项公式,训练了利用数学归纳法证明与自然数有关的命题的方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知点A(15,0),点P是圆x2+y2=9上的动点,M为线段PA的中点,当点P在圆上运动时,求动点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.过点M(-2,a),N(a,4)的直线的斜率为-$\frac{1}{2}$,则|MN|=(  )
A.10B.180C.6$\sqrt{3}$D.6$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在平面直角坐标系中,$|\overrightarrow{OA}|=2|\overrightarrow{AB}|=2$,∠OAB=$\frac{2π}{3}$,$\overrightarrow{BC}=(-1,\sqrt{3})$,求点B,C的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)对于任意x,y∈R,总有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,f(1)=-$\frac{1}{4}$
(Ⅰ)求证:f(x)在R上是减函数.
(Ⅱ)求f(x)在[-4,4]上的最大值和最小值.
(Ⅲ)当m+n≠0时,求证$\frac{f(m)+f(n)}{m+n}<f(0)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.双曲线x2-$\frac{{y}^{2}}{9}$=1的渐近线与抛物线y2=2px(p>0)的准线相交于A,B两点,若△ABO的面积为6(O为坐标原点),则p的值是2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.定义在R上的函数f(x)满足f(-x)+f(x)=0,f(x)=-f(x+2),且x∈(-1,0)时,f(x)=2x-$\frac{1}{5}$,则f(log220)=(  )
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.-$\frac{4}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若数列{an}是公比为q的等比数列,下列数列中不是等比数列的是(  )
A.{an•an+1}B.{nan}C.{${a}_{n}^{2}$}D.$\frac{{a}_{n}}{{a}_{n+1}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=(2ax-x2)eax(a≥0)
(Ⅰ)若函数f(x)在区间$(\sqrt{2},2)$上单调递减,求实数a的取值范围.
(Ⅱ)若函数f(x)在区间$(\sqrt{2},2)$上存在单调递减区间,求实数a的取值范围.

查看答案和解析>>

同步练习册答案