【题目】如图,在四棱锥中,底面是直角梯形,侧棱底面, 垂直于和,为棱上的点,,.
(1)若为棱的中点,求证://平面;
(2)当时,求平面与平面所成的锐二面角的余弦值;
(3)在第(2)问条件下,设点是线段上的动点,与平面所成的角为,求当取最大值时点的位置.
【答案】(1)见解析;(2);(3)即点N在线段CD上且
【解析】
(1)取线段SC的中点E,连接ME,ED.可证是平行四边形,从而有,则可得线面平行;
(2)以点A为坐标原点,建立分别以AD、AB、AS所在的直线为x轴、y轴、z轴建立空间直角坐标系,求出两平面与平面的法向量,由法向量夹角的余弦值可得二面角的余弦值;
(3)设,其中,求出,由MN与平面所成角的正弦值为与平面的法向量夹角余弦值的绝对值可求得结论.
(1)证明:取线段SC的中点E,连接ME,ED.
在中,ME为中位线,∴且,
∵且,∴且,
∴四边形AMED为平行四边形.
∴.
∵平面SCD,平面SCD,
∴平面SCD.
(2)解:如图所示以点A为坐标原点,建立分别以AD、AB、AS所在的直线为x轴、y轴、z轴建立空间直角坐标系,则,,,,,
由条件得M为线段SB近B点的三等分点.
于是,即,
设平面AMC的一个法向量为,则,
将坐标代入并取,得.
另外易知平面SAB的一个法向量为,
所以平面AMC与平面SAB所成的锐二面角的余弦为.
(3)设,其中.
由于,所以.
所以,
可知当,即时分母有最小值,此时有最大值,
此时,,即点N在线段CD上且.
科目:高中数学 来源: 题型:
【题目】若对任意实数都有函数的图象与直线相切,则称函数为“恒切函数”,设函数,其中.
(1)讨论函数的单调性;
(2)已知函数为“恒切函数”,
①求实数的取值范围;
②当取最大值时,若函数也为“恒切函数”,求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=4x2-kx-8.
(1)若函数y=f(x)在区间[2,10]上单调,求实数k的取值范围;
(2)若y=f(x)在区间(-∞,2]上有最小值-12,求实数k的值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设{an}是首项为a,公差为d的等差数列(d≠0),Sn是其前n项和.记bn= ,n∈N* , 其中c为实数.
(1)若c=0,且b1 , b2 , b4成等比数列,证明:Snk=n2Sk(k,n∈N*);
(2)若{bn}是等差数列,证明:c=0.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com