【题目】已知函数.
(1)当时,求函数在处的切线方程;
(2)令,讨论函数的零点的个数;
(3)若,正实数满足,证明: .
【答案】(1)2x﹣y﹣1=0;(2)见解析;(3)见解析.
【解析】试题分析:(1)求出函数的导数,计算,求出切线方程即可;
(Ⅱ)求出函数的导数,通过讨论 的范围,根据函数的单调区间和函数的极值即可讨论函数的零点的个数;;
(Ⅲ)得到 令,则,根据函数的单调性求出,证明结论即可.
试题解析:
(1)当a=0时,f(x)= lnx+x,
则f(1)=1,所以切点为(1,1),
又f′(x)= +1,则切线斜率k = f′(1)=2,
故切线方程为:y﹣1=2(x﹣1),即2x﹣y﹣1=0
(2)g(x)=f(x)﹣(ax﹣1)=lnx﹣ax2+(1﹣a)x+1,
所以g′(x)=﹣ax+(1﹣a)=,
当a≤0时,因为x>0,所以g′(x)>0.
所以g(x)在(0,+∞)上是递增函数
而
所以函数有且只有一个零点
当0<a<1时,g′(x)=,
令g′(x)=0,得x=,
所以当x∈(0,)时,g′(x)>0;当x∈(,+∞)时,g′(x)<0,
因此函数g(x)在x∈(0,)是增函数,在(,+∞)是减函数,
∴x=时,g(x)有极大值g()=﹣lna>0
又
∴当0<a<1时函数有两个零点
(3)证明:当
所以
即为:
所以
令
所以
所以
所以
因为
科目:高中数学 来源: 题型:
【题目】给出下列命题:①已知 ,“ 且 ”是“ ”的充分条件;
②已知平面向量 , 是“ ”的必要不充分条件;
③已知 ,“ ”是“ ”的充分不必要条件;
④命题 “ ,使 且 ”的否定为 “ ,都有 且 ”.其中正确命题的个数是( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点在圆: 上,而为在轴上的投影,且点满足,设动点的轨迹为曲线.
(1)求曲线的方程;
(2)若是曲线上两点,且, 为坐标原点,求的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2018福建福州市一中高三上学期期中考试】已知椭圆: 的右焦点为,点在椭圆上,且与轴交点恰为中点.
(I)求椭圆的方程;
(II)过作两条互相垂直的直线,分别交椭圆于点和.求四边形的面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是2017年第一季度五省情况图,则下列陈述正确的是( )
①2017年第一季度 总量和增速均居同一位的省只有1个;
②与去年同期相比,2017年第一季度五个省的总量均实现了增长;
③去年同期的总量前三位是江苏、山东、浙江;
④2016年同期浙江的总量也是第三位.
A. ①② B. ②③④ C. ②④ D. ①③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的一条对称轴为,且最高点的纵坐标是.
(1)求的最小值及此时函数的最小正周期、初相;
(2)在(1)的情况下,设,求函数在上的最大值和最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com