精英家教网 > 高中数学 > 题目详情

【题目】已知函数有两个不同的零点.

1)求的取值范围;

2)记两个零点分别为已知若不等式恒成立,求的取值范围.

【答案】(1)(2)

【解析】试题分析:(Ⅰ)方程有两个不同跟等价于函数与函数的图像在上有两个不同交点,对进行求导,通过单调性画出的草图,由有两个交点进而得出的取值范围; (Ⅱ)分离参数得: ,从而可得恒成立;再令,从而可得不等式上恒成立,再令,从而利用导数化恒成立问题为最值问题即可.

试题解析:(I)依题意,函数的定义域为

所以方程有两个不同跟等价于函数与函数的图像在上有两个不同交点.

,即当时, ;当时, ,

所以上单调递增,在上单调递减.

从而.

有且只有一个零点是1,且在时, ,在时,

所以的草图如下:

可见,要想函数与函数在图像上有两个不同交点,只需.

(Ⅱ)由(I)可知分别为方程的两个根,即

所以原式等价于.

因为 ,所以原式等价于.

又由 作差得, ,即.

所以原式等价于.

因为,原式恒成立,即恒成立.

,则不等式上恒成立.

,则

时,可见时, 所以上单调递增,又恒成立,符合题意;

时,可见当时, ;当时,

所以时单调递增,在时单调递减.

,所以上不能恒小于0,不符合题意,舍去.

综上所述,若不等式恒成立,只须,又,所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知O、A、B三地在同一水平面内,A地在O地正东方向2km处,B地在O地正北方向2km处,某测绘队员在A、B之间的直线公路上任选一点C作为测绘点,用测绘仪进行测绘,O地为一磁场,距离其不超过km的范围内会测绘仪等电子仪器形成干扰,使测量结果不准确,则该测绘队员能够得到准确数据的概率是(  )
A.1-
B.
C.1-
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为为参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,且直线经过曲线的左焦点

(1)求直线的普通方程;

(2)设曲线的内接矩形的周长为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若函数有三个不同的极值点,求的值;

(2)若存在实数,使对任意的,不等式恒成立,求正整数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4—5:不等式选讲]

已知.

(1)若的解集为,求的值;

(2)若不等式恒成立,求实数的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】☉O为△ABC的内切圆,AB=9,BC=8,CA=10,点D,E分别为AB,AC上的点,且DE为☉O的切线,求△ADE的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】微信已成为人们常用的社交软件,“微信运动”是微信里由腾讯开发的一个类似计步数据库的公众账号.手机用户可以通过关注“微信运动”公众号查看自己每天行走的步数,同时也可以和好友进行运动量的或点赞.现从小明的微信朋友圈内随机选取了40人(男、女各20人),记录了他们某一天的走路步数,并将数据整理如下表:

步数

性别

02000

20015000

50018000

800110000

>10000

1

2

4

7

6

0

3

9

6

2

若某人一天的走路步数超过8000步被系统评定为“积极型”,否则被系统评定为“懈怠型”.

(1)利用样本估计总体的思想,试估计小明的所有微信好友中每日走路步数超过10000步的概率;

(2)根据题意完成下面的列联表,并据此判断能否有90%的把握认为“评定类型”与“性别”有关?

积极型

懈怠型

总计

总计

附:

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若曲线在点处的切线与直线垂直,求函数的极值;

(2)设函数.=时,若区间[1,e]上存在x0,使得,求实数的取值范围.(为自然对数底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P(a,b)(ab≠0)是圆x2+y2=r2内的一点,直线m是以P为中点的弦所在直线,直线l的方程为ax+by=r2 , 那么(
A.m∥l,且l与圆相交
B.m⊥l,且l与圆相切
C.m∥l,且l与圆相离
D.m⊥l,且l与圆相离

查看答案和解析>>

同步练习册答案