精英家教网 > 高中数学 > 题目详情

【题目】f(x)=a(x-5)2+6lnx,其中a∈R,曲线yf(x)在点(1,f(1))处的切线与y轴相交于点(0,6).

(1)确定a的值;

(2)求函数f(x)的单调区间与极值.

【答案】(1) a=.(2)见解析.

【解析】试题分析:(1)求出导数,得,写出题中切线方程,令,则,由此可得;(2)解不等式得增区间,解不等式得减区间; 的点就是极值点,由刚才的单调性可知是极大值点还是极小值点.

试题解析:(1)因为

,得

所以曲线在点处的切线方程为

由点在切线上,可得,解得

2)由(1)知, ),

,解得

时, ,故的递增区间是

时, ,故的递减区间是

由此可知处取得极大值

处取得极小值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图, 表示神风摩托车厂一天的销售收入与摩托车销售量的关系; 表示摩托车厂一天的销售成本与销售量的关系.

(1)写出销售收入与销售量之间的函数关系式;

(2)写出销售成本与销售量之间的函数关系式;

(3)当一天的销售量为多少辆时,销售收入等于销售成本;

(4)当一天的销售超过多少辆时,工厂才能获利?(利润=收入-成本)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的圆心在直线上,且与另一条直线相切于点.

(1)求圆的标准方程;

(2)已知在圆上运动,求线段的中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)f(0)=-2,且对yR,都有f(x+y)-f(y)=(x+2y+1)x.

1)求f(x)的表达式;

2)已知关于x的不等式f(x)-ax+a+1的解集为AA[2,3],求实数a的取值范围;

3)已知数列{}中, ,且数列{的前n项和为

求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过点A(01)且斜率为k的直线l与圆C(x2)2(y3)21交于MN两点.

(1)k的取值范围;

(2)12,其中O为坐标原点,求|MN|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设双曲线的左焦点为,点为双曲线右支上的一点,且与圆相切于点为线段的中点, 为坐标原点,则__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知⊙H被直线x-y-1=0,x+y-3=0分成面积相等的四个部分,且截x轴所得线段的长为2

(I)求⊙H的方程;

()若存在过点P(0,b)的直线与⊙H相交于MN两点,且点M恰好是线段PN的中点,求实数b的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位N名员工参加社区低碳你我他活动他们的年龄在25岁至50岁之间。按年龄分组:第1组,第2组,第3组,第4组,第5组由统计的数据得到的频率分布直方图如图所示,下表是年龄的频率分布表。

区间

人数

a

b

1)求正整数abN的值;

2)现要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,则年龄在第1,2,3组中抽取的人数分别是多少?

3)在(2)的条件下,从这6人中随机抽取2人参加社区宣传交流活动,求恰有1 人在第3组的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,圆,点是圆上一动点, 的垂直平分线与交于点.

1)求点的轨迹方程;

2)设点的轨迹为曲线,过点且斜率不为0的直线交于两点,点关于轴的对称点为,证明直线过定点,并求面积的最大值.

查看答案和解析>>

同步练习册答案