精英家教网 > 高中数学 > 题目详情

【题目】某工厂生产某种电子产品,每件产品不合格的概率均为,现工厂为提高产品声誉,要求在交付用户前每件产品都通过合格检验,已知该工厂的检验仪器一次最多可检验件该产品,且每 件产品检验合格与否相互独立.若每件产品均检验一次,所需检验费用较多,该工厂提出以下检 验方案:将产品每一组进行分组检验,如果某一组产品检验合格,则说明该组内产品均合格,若检验不合格,则说明该组内有不合格产品,再对该组内每一件产品单独进行检验,如此,每一组产品只需检验次或次.设该工厂生产件该产品,记每件产品的平均检验次 数为

1)求的分布列及其期望;

2)(i)试说明,当越小时,该方案越合理,即所需平均检验次数越少;

ii)当时,求使该方案最合理时的值及件该产品的平均检验次数.

【答案】1)见解析,2)(i)见解析(ii时平均检验次数最少,约为594次.

【解析】

1)由题意可得的可能取值为,分别求出其概率即可求出分布列,进而可求出期望.

2)(i)由,根据函数的单调性即可证出;,当且取最小值时,该方案最合理,对进行赋值即可求解.

1由题,的可能取值为

,故的分布列为

,因为

所以 上单调递增

越小,越小,即所需平均检验次数越少,该方案越合理

且取最小值时,该方案最合理,

因为

所以时平均检验次数最少,约为次.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,在三棱柱中,为等边三角形,平面是线段上靠近的三等分点.

1)求证:

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明,下面是赵爽的弦图及注文,弦图是一个以勾股之弦为边的正方形,其面积称为弦实,图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实、黄实,利用×+(股-勾)2=4×朱实+黄实=弦实,化简得勾2+2=2,设勾股形中勾股比为,若向弦图内随机抛掷1000颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为(

A.134B.866C.300D.188

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列判断错误的是( )

A.若随机变量服从正态分布,则

B.已知直线平面,直线平面,则“”是“”的充分不必要条件

C.若随机变量服从二项分布: , 则

D.的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆()的离心率为,以的短轴为直径的圆与直线相切.

1)求的方程;

2)直线两点,且.已知上存在点,使得是以为顶角的等腰直角三角形,若在直线的右下方,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在世界读书日期间,某地区调查组对居民阅读情况进行了调查,获得了一个容量为200的样本,其中城镇居民140人,农村居民60.在这些居民中,经常阅读的城镇居民有100人,农村居民有30.

1)填写下面列联表,并判断能否有99%的把握认为经常阅读与居民居住地有关?

城镇居民

农村居民

合计

经常阅读

100

30

不经常阅读

合计

200

2)从该地区城镇居民中,随机抽取5位居民参加一次阅读交流活动,记这5位居民中经常阅读的人数为,若用样本的频率作为概率,求随机变量的期望.

附:,其中.

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,等腰梯形中,的中点.将沿折起后如图2,使二面角成直二面角,设的中点,是棱的中

点.

1)求证:

2)求证:平面平面

3)判断能否垂直于平面,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρ2cos2θ+3sin2θ)=12,直线l的参数方程为t为参数),直线l与曲线C交于MN两点.

1)若点P的极坐标为(2π),求|PM||PN|的值;

2)求曲线C的内接矩形周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若曲线处的切线与直线垂直,求函数的极值;

2)若函数的图象恒在直线的下方.

①求的取值范围;

②求证:对任意正整数,都有.

查看答案和解析>>

同步练习册答案