分析 利用正弦定理求出B的正弦函数值,然后求出余弦函数值,
解答 解:在△ABC中,b=1,c=$\sqrt{2}$,C=120°,
由正弦定理$\frac{b}{sinB}=\frac{c}{sinC}$,可得:sinB=$\frac{bsinC}{c}$=$\frac{1×\frac{\sqrt{3}}{2}}{\sqrt{2}}$=$\frac{\sqrt{6}}{4}$,
cosB=$\sqrt{1-({\frac{\sqrt{6}}{4})}^{2}}$=$\frac{\sqrt{10}}{4}$.
a2=b2+c2-2bccosA=1+2-2$\sqrt{2}$cos(60°-B)=3-2$\sqrt{2}$×$\frac{1}{2}×\frac{\sqrt{10}}{4}$-2$\sqrt{2}×\frac{\sqrt{3}}{2}×\frac{\sqrt{6}}{4}$=$\frac{3}{2}$-$\frac{\sqrt{5}}{2}$.
∴a=$\frac{\sqrt{5}-1}{2}$.
点评 本题考查余弦定理的应用,正弦定理的应用,三角形的解法,考查计算能力.
科目:高中数学 来源: 题型:选择题
A. | 1组 | B. | 2组 | C. | 3组 | D. | 4组 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{16}$ | B. | $\frac{1}{4}$ | C. | $\frac{3}{8}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com