【题目】在△ABC中,BC边上的高所在的直线方程为x-2y+1=0,∠A的平分线所在的直线方程为y=0. 若B的坐标为(1,2),求△ABC三边所在直线方程及点C坐标.
【答案】BC: 2x+y-4=0. AB:x-y+1=0, AC:x+y+1=0,C(5,-6)
【解析】试题分析:由边上的高所在的直线方程为x-2y+1=0,可得直线的斜率,又B的坐标为(1,2),由点斜式可得直线的方程;由边上的高所在的直线方程与角的平分线方程联立可得点的坐标,利用两点式可得直线的方程,根据直线的对称性列可求出直线的方程;直线的方程与直线的方程联立可得点的坐标.
试题解析:BC边上高AD所在直线方程x-2y+1=0,
∴kBC=-2,
∴BC边所在直线方程为:y-2=-2(x-1)即2x+y-4=0.
由,得A(-1,0),
∴直线AB:x-y+1=0,点B(1,2)关于y=0的对称点B′(1,-2)在边AC上,
∴直线AC:x+y+1=0,
由,得点C(5,-6).
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)
甲乙两个班级进行一门课程的考试,按照学生考试成绩优秀和不优秀统计成绩后,得到如下的列联表:
班级与成绩列联表
优 秀 | 不优秀 | |
甲 班 | 10 | 35 |
乙 班 | 7 | 38 |
根据列联表的独立性检验,能否在犯错误的概率不超过0.01的前提下认为成绩与班级有关系?
附:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,其中
(1)当时,求函数在处的切线方程;
(2)若函数在定义域上有且只有一个极值点,求实数的取值范围;
(3)若对任意恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数(,,,)的图象在点处的切线的斜率为,且函数为偶函数.若函数满足下列条件:①;②对一切实数,不等式恒成立.
(1)求函数的表达式;
(2)设函数()的两个极值点,()恰为的零点,当时,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的两个焦点分别为,离心率为.设过点的直线与椭圆相交于不同两点, 周长为.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)已知点,证明:当直线变化时,总有TA与的斜率之和为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】宿州市教体局为了了解届高三毕业生学生情况,利用分层抽样抽取位学生数学学业水平测试成绩作调查,制作了成绩频率分布直方图,如图所示,其中成绩分组区间是:,,,,,.
(Ⅰ)求图中的值;
(Ⅱ)根据直方图估计宿州市届高三毕业生数学学业水平测试成绩的平均分;
(Ⅲ)在抽取的人中,从成绩在和的学生中随机选取人,求这人成绩差别不超过分的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校举行物理竞赛,有8名男生和12名女生报名参加,将这20名学生的成绩制成茎叶图如图所示.成绩不低于80分的学生获得“优秀奖”,其余获“纪念奖”.
(Ⅰ)求出8名男生的平均成绩和12 名女生成绩的中位数;
(Ⅱ)按照获奖类型,用分层抽样的方法从这20名学生中抽取5人,再从选出的5人中任选3人,求恰有1人获“优秀奖”的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种商品在天每件的销售价格(元)与时间(天)的函数关系用如图表示,该商品在天内日销售量(件)与时间(天)之间的关系如下表:
天 | ||||
件 |
()根据提供的图象(如图),写出该商品每件的销售价格与时间的函数关系式.
()根据表提供的数据,写出日销售量与时间的一次函数关系式.
()求该商品的日销售金额的最大值,并指出日销售金额最大的一天是天中的第几天.(日销售金额每件的销售价格日销售量)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com