精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}满足[2﹣(﹣1)n]an+[2+(﹣1)n]an+1=1+(﹣1)n×3n,则a25﹣a1=

【答案】300
【解析】解:∵[2﹣(﹣1)n]an+[2+(﹣1)n]an+1=1+(﹣1)n×3n,

∴n=2k(k∈N*),可得:a2k+3a2k+1=1+6k,

n=2k﹣1(k∈N*),可得:3a2k1+a2k=1﹣6k+3,

∴a2k+1﹣a2k1=4k﹣1,

∴a25=(a25﹣a23)+(a23﹣a21)+…+(a3﹣a1)+a1

=(4×12﹣1)+(4×11﹣1)+…+(4×1﹣1)+a1= ﹣12+a1=300+a1

则a25﹣a1=300,

所以答案是:300.

【考点精析】利用数列的通项公式对题目进行判断即可得到答案,需要熟知如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】“大众创业,万众创新”是李克强总理在本届政府工作报告中向全国人民发出的口号.某生产企业积极响应号召,大力研发新产品,为了对新研发的一批产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组销售数据(xi , yi)(i=1,2,…,6),如表所示:

试销单价x(元)

4

5

6

7

8

9

产品销量y(件)

q

84

83

80

75

68

已知 =80.
(Ⅰ)求出q的值;
(Ⅱ)已知变量x,y具有线性相关关系,求产品销量y(件)关于试销单价x(元)的线性回归方程 ;可供选择的数据:
(Ⅲ)用 表示用(Ⅱ)中所求的线性回归方程得到的与xi对应的产品销量的估计值.当销售数据(xi , yi)对应的残差的绝对值 时,则将销售数据(xi , yi)称为一个“好数据”.现从6个销售数据中任取3个,求“好数据”个数ξ的分布列和数学期望E(ξ).
(参考公式:线性回归方程中 的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某县一中计划把一块边长为20米的等边三角形ABC的边角地辟为植物新品种实验基地,图中DE需把基地分成面积相等的两部分,D在AB上,E在AC上.
(1)设AD=x(x≥10),ED=y,试用x表示y的函数关系式;
(2)如果DE是灌溉输水管道的位置,为了节约,则希望它最短,DE的位置应该在哪里?如果DE是参观线路,则希望它最长,DE的位置又应该在哪里?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位280名员工参加“我爱阅读”活动,他们的年龄在25岁至50岁之间,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50),得到的频率分布直方图如图所示.
(I)现要从年龄低于40岁的员工中用分层抽样的方法抽取12人,则年龄在第1,2,3组的员工人数分别是多少?
(II)为了交流读书心得,现从上述12人中再随机抽取3人发言,设3人中年龄在[35,40)的人数为ξ,求ξ的数学期望;
(III)为了估计该单位员工的阅读倾向,现对从该单位所有员工中按性别比例抽取的40人做“是否喜欢阅读国学类书籍”进行调查,调查结果如下表所示:(单位:人)

喜欢阅读国学类

不喜欢阅读国学类

合计

14

4

18

8

14

22

合计

22

18

40

根据表中数据,我们能否有99%的把握认为该单位员工是否喜欢阅读国学类书籍和性别有关系?
附: ,其中n=a+b+c+d

P(K2≥k0

0.05

0.025

0.010

0.005

0.001

k0

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥P﹣ABCD的三视图如图所示,则四棱锥P﹣ABCD的四个侧面中面积最大的是(
A.3
B.2
C.6
D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=alnx+ x2﹣(1+a)x.
(1)求函数f(x)的单调区间;
(2)若f(x)≥0对定义域中的任意x恒成立,求实数a的取值范围;
(3)证明:对任意正整数m,n,不等式 + +…+ 恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2x+1,x∈N* , 若x0 , n∈N* , 使f(x0)+f(x0+1)+…+f(x0+n)=63成立,则称(x0 , n)为函数f(x)的一个“生成点”,函数f(x)的“生成点”共有(
A.2个
B.3个
C.4个
D.5个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线Cy2=2pxp>0)上的点A(4,t)到其焦点F的距离为5.

(Ⅰ)求抛物线C的方程;

(Ⅱ)过点F作直线l,使得抛物线C上恰有三个点到直线1的距离为2,求直线1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的四棱锥 中,四边形ABCD为正方形, 平面PAB,且 分别为 的中点, .

证明:
(1) ;
(2)若 ,求二面角 的余弦值.

查看答案和解析>>

同步练习册答案