精英家教网 > 高中数学 > 题目详情
4.若(1+i)z=2,则|z|是(  )
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.1

分析 由(1+i)z=2,得$z=\frac{2}{1+i}$,然后利用复数代数形式的乘除运算化简复数z,再由复数求模公式计算得答案.

解答 解:由(1+i)z=2,
得$z=\frac{2}{1+i}$=$\frac{2(1-i)}{(1+i)(1-i)}=1-i$,
则|z|=$\sqrt{2}$.
故选:C.

点评 本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.“x<0”是“x2+x<0”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ax-lnx(a∈R).
(1)当a=1时,求f(x)的最小值;
(2)若存在x∈[1,3],使$\frac{f(x)}{{x}^{2}}$+lnx=2成立,求a的取值范围;
(3)若对任意的x∈[1,+∞),有f(x)≥f($\frac{1}{x}$)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在如图所示的四棱锥S-ABCD中,∠DAB=∠ABC=90°,SA=AB=BC=1,AD=3.
(1)在棱SA上确定一点M,使得BM∥平面SCD,保留作图痕迹,并证明你的结论.
(2)当SA⊥平面ABCD且点E为线段BS的三等分点(靠近B)时,求三棱锥S-AEC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若变量x,y满足约束条件$\left\{\begin{array}{l}x-y+1≤0\\ x+2y-8≤0\\ x≥0\end{array}\right.$,则z=3x+y的取值范围是[1,9].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.高三学生在新的学期里,刚刚搬入新教室,随着楼层的升高,上下楼耗费的精力增多,因此不满意度升高,当教室在第n层楼时,上下楼造成的不满意度为n,但高处空气清新,嘈杂音较小,环境较为安静,因此随教室所在楼层升高,环境不满意度降低,设教室在第n层楼时,环境不满意度为$\frac{8}{n}$,则同学们认为最适宜的教室应在(  )
A.2楼B.3楼C.4楼D.8楼

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知双曲线C:x2-y2=1及直线l:y=kx+1.
(1)若l与C有两个不同的交点,求实数k的取值范围;
(2)若l与C交于A,B两点,且AB中点横坐标为$\sqrt{2}$,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在如图所示正方体ABCD-A1B1C1D1中,E是BC1与B1C的交点,给出编号为①②③④⑤的五个图,则四面体A1-CC1E的侧视图和俯视图分别为(  )
A.①和⑤B.②和③C.④和⑤D.④和③

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.命题“?x∈(0,+∞),x2-3ax+9<0”为假命题,则实数a的取值范围为a≤2.

查看答案和解析>>

同步练习册答案