【题目】等比数列{an}中,已知a1=1,a4=8,若a3 , a5分别为等差数列{bn}的第4项和第16项.
(1)求数列{an}﹑{bn}的通项公式;
(2)令cn=anbn , 求数列{cn}的前n项和Sn .
【答案】
(1)解:设等比数列{an}公比为q,
∴a4=a1q3=8,即q3=8,即q=2,
∴an=a1qn﹣1=2n﹣1,
∴a3=4,a5=16,
∴b4=4,b16=16,
由等差数列公差为d,
∴d= = =1,
∴bn=b16+(n﹣16)×1=n,
数列{an}通项公式an=2n﹣1,{bn}的通项公式bn=n
(2)解:cn=anbn=n2n﹣1,
数列{cn}的前n项和Sn.
∴Sn=11+22+322+…+n2n﹣1,①
2Sn=12+222+323+…+n2n,②
①﹣②,得﹣Sn=1+2+22+…+2n﹣1﹣n2n,
= ﹣n2n,
=(1﹣n)2n﹣1,
Sn=(n﹣1)2n+1,
数列{cn}的前n项和Sn,Sn=(n﹣1)2n+1
【解析】(1)由等比数列的通项公式,代入即可求得公比q,由b4=4,b16=16,根据等差数列性质即可求得公差d,即可求得数列{an}﹑{bn}的通项公式;(2)由(1)可知:cn=anbn=n2n﹣1 , 利用错位相减法能求出数列{cn}的前n项和Sn .
【考点精析】认真审题,首先需要了解等比数列的通项公式(及其变式)(通项公式:),还要掌握数列的前n项和(数列{an}的前n项和sn与通项an的关系)的相关知识才是答题的关键.
科目:高中数学 来源: 题型:
【题目】下列有关命题的叙述,错误的个数为( )
①若p∨q为真命题,则p∧q为真命题
②“x>5”是“x2﹣4x﹣5>0”的充分不必要条件
③命题p:x∈R,使得x2+x﹣1<0,则¬p:x∈R,使得x2+x﹣1≥0
④命题“若x2﹣3x+2=0,则x=1或x=2”的逆否命题为“若x≠1或x≠2,则x2﹣3x+2≠0”
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】等差数列{an}中,a2=4,a4+a7=15.
(1)求数列{an}的通项公式;
(2)设bn=2 +n,求b1+b2+b3+…+b10的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C:x2+y2﹣8y+12=0,直线l经过点D(﹣2,0),且斜率为k.
(1)求以线段CD为直径的圆E的方程;
(2)若直线l与圆C相离,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:y2=﹣4x. (Ⅰ)已知点M在抛物线C上,它与焦点的距离等于5,求点M的坐标;
(Ⅱ)直线l过定点P(1,2),斜率为k,当k为何值时,直线l与抛物线:只有一个公共点;两个公共点;没有公共点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,三个内角是A,B,C的对边分别是a,b,c,其中c=10,且 .
(1)求证:△ABC是直角三角形;
(2)设圆O过A,B,C三点,点P位于劣弧AC上,∠PAB=60°,求四边形ABCP的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若a,b是函数f(x)=x2﹣px+q(p>0,q>0)的两个不同的零点,且a,b,﹣4这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于( )
A.16
B.10
C.26
D.9
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com