【题目】已知函数,.
(1)讨论函数的零点的个数;
(2)当函数有两个零点时,证明:.
【答案】(1)见解析;(2)证明见解析
【解析】
(1)分别讨论,,时的单调性,进而判断零点个数;
(2)由(1)可知时有两个零点, ,设,由,可得存在,则在上是减函数,在上是增函数,即为最小值,故证明即可.
(1)由题,
当时,在上是增函数
又时,
∴有一个零点
当时,∴无零点
当时在上是增函数
又时,时,
∴在上存在唯一零点
∴在上是减函数,在上是增函数
又时,时,
当时,
∴有两个零点
当时,,∴
∴
∴有一个零点
当时,
当时,在上无零点
当时
∴
∴在上也无零点
∴在上无零点
综上:时有两个零点
或时有一个零点
时无零点
(2)证明:由(1)知,
令,在上是增函数
又,
∴存在,使
∴在上是减函数,在上是增函数
∴
∵
∴
∴
∵
∴
又
∴
∴
科目:高中数学 来源: 题型:
【题目】已知为定义在实数集上的函数,把方程称为函数的特征方程,特征方程的两个实根、(),称为的特征根.
(1)讨论函数的奇偶性,并说明理由;
(2)已知为给定实数,求的表达式;
(3)把函数,的最大值记作,最小值记作,研究函数,的单调性,令,若恒成立,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公园草坪上有一扇形小径(如图),扇形半径为,中心角为,甲由扇形中心出发沿以每秒2米的速度向快走,同时乙从出发,沿扇形弧以每秒米的速度向慢跑,记秒时甲、乙两人所在位置分别为,,通过计算,判断下列说法是否正确:
(1)当时,函数取最小值;
(2)函数在区间上是增函数;
(3)若最小,则;
(4)在上至少有两个零点;
其中正确的判断序号是______(把你认为正确的判断序号都填上)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某社会机构为了调查对手机游戏的兴趣与年龄的关系,通过问卷调查,整理数据得如下列联表:
(1)根据列联表,能否有99.9%的把握认为对手机游戏的兴趣程度与年龄有关?
(2)若已经从40岁以下的被调查者中用分层抽样的方式抽取了5名,现从这5名被调查者中随机选取3名,求这3名被调查者中恰有1名对手机游戏无兴趣的概率.
附:
参考数据:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系上放置一个边长为1的正方形,此正方形沿轴滚动(向左或向右均可),滚动开始时,点位于原点处,设顶点的纵坐标与横坐标的函数关系式,,该函数相邻两个零点之间的距离为.
(1)写出的值并求出顶点到的最小运动路径的长度的值;
(2)写出函数,,的表达式;并研究该函数除周期外的基本性质(无需证明).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是(≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26 cm,则其身高可能是
A. 165 cmB. 175 cmC. 185 cmD. 190cm
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,其中无理数.
(Ⅰ)若函数有两个极值点,求的取值范围;
(Ⅱ)若函数的极值点有三个,最小的记为,最大的记为,若的最大值为,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下四个命题中:①在回归分析中,可用相关系数r的值判断模型的拟合效果,|r|越大,模拟的拟合效果越好;②在一组样本数据不全相等)的散点图中,若所有样本点都在直线上,则这组样本数据的线性相关系数为;③对分类变量x与y的随机变量来说,越小,判断“x与y有关系”的把握程度越大.其中真命题的个数为__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com