精英家教网 > 高中数学 > 题目详情

【题目】已知直线 的方程为,点的坐标为.

)求过点且与直线平行的直线方程;

)求过点且与直线垂直的直线方程.

【答案】(I);(II)

【解析】

试题分析:(1)设过P点且与直线l平行的直线方程为x+2y+k=0,把P点坐标代入求得k值得答案;(2)设过P点且与直线l垂直的直线方程为2x-y+b=0,把P点坐标代入求得b值得答案

试题解析::(1)设过P点且与直线l平行的直线方程为x+2y+k=0,(2分)

则1+2×(-2)+k=0,即k=3,(3分)

过P点且与直线l平行的直线方程为x+2y+3=0(4分);

(2)设过P点且与直线l垂直的直线方程为2x-y+b=0,(6分)

则2×1-(-2)+b=0,即b=-4,(7分)

过P点且与直线l垂直的直线方程为2x-y-4=0.(8分)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交作品的件数按照5天一组分组统计,绘制了频率分布直方图(如图所示).已知从左到右各长方形的高的比为2:3:4:6:4:1,第三组的频数为12,请解答下列各题.

(1)本次活动共有多少件作品参加评比?

(2)哪组上交的作品数量最多?有多少件?

(3)经过评比,第四组和第六组分别有10件2件作品获奖,问这两组哪一组获奖率较高?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5), [0.5,1),……[4,4.5]分成9组,制成了如图所示的频率分布直方图.

(I)求直方图中的a值;

(II)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数.说明理由;

)估计居民月均用水量的中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从数列中抽出一项,依原来的顺序组成的新叫数列的一个子列.

(1)写出数列的一个是等比数列的子列

(2)若是无穷等比数列,首项,公比,则数列是否存在一个子列,为无穷等差数列?若存在,写出该子列的通项公式;若不存在,证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某次测验中,有6位同学的平均成绩为75分, 用xn表示编号为n(n=1,2,,6)的同学所得成绩,且前5位同学的成绩如下:

编号n

1

2

3

4

5

成绩xn

70

76

72

70

72

(1)求第6位同学的成绩x6,及这6位同学成绩的标准差s;

(2)从前5位同学中选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知直线的参数方程式是参数.以坐标原点为极点,轴的正半轴为极轴,且取相同的长度单位建立极坐标系,圆的极坐标方程为

1求直线的普通方程与圆的直角坐标方程;

2设圆与直线交于两点,若点的直角坐标为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某重点高中拟把学校打造成新型示范高中,为此制定了学生七不准一日三省十问等新的规章制度.新规章制度实施一段时间后,学校就新规章制度随机抽取部分学生进行问卷调查,调查卷共有10个问题,每个问题10分,调查结束后,按分数分成5组 并作出频率分布直方图与样本分数的茎叶图(图中仅列出了得分在的数据).

(1)求样本容量和频率分布直方图中的的值;

(2)在选取的样本中,从分数在70分以下的学生中随机抽取2名学生进行座谈会,求所抽取的2名学生中恰有一人得分在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】实数满足不等式函数极值点.

(1”为假命题,“真命题,求实数取值范围;

(2已知. ”为真命题,并记为必要不充分条件,求实数取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从参加高一年级期末考试的学生中抽出60名学生,将其成绩(均为整数)分成六段 后画出如下部分频率分布直方图.观察图形的信息,回答下列问题:

(1)求第四小组的频率,并补全这个频率分布直方图;

(2)估计这次考试的及格率(60分及以上为及格)和平均分;

(3)从成绩是70分以上(包括70分)的学生中选两人,求他们在同一分数段的概率.

查看答案和解析>>

同步练习册答案