精英家教网 > 高中数学 > 题目详情
12.如图,长方体ABCD-A′B′C′D′中,AA′=3,AB=4,AD=5,E、F分别是线段AA′和AC的中点,则异面直线EF与CD′所成的角是(  )
A.30°B.45°C.60°D.90°

分析 以A为原点,AB为x轴,AD为y轴,AA′为z轴,建立空间直角坐标系,利用向量法能求出异面直线EF与CD′所成的角.

解答 解:以A为原点,AB为x轴,AD为y轴,AA′为z轴,建立空间直角坐标系,
则E(0,0,$\frac{3}{2}$),F(2,$\frac{5}{2}$,0),C(4,5,0),
D′(0,5,3),
$\overrightarrow{EF}$=(2,$\frac{5}{2}$,-$\frac{3}{2}$),$\overrightarrow{C{D}^{'}}$=(-4,0,3),
∴cos<$\overrightarrow{EF},\overrightarrow{C{D}^{'}}$>=$\frac{\overrightarrow{EF}•\overrightarrow{C{D}^{'}}}{|\overrightarrow{EF}|•|\overrightarrow{C{D}^{'}}|}$=$\frac{-8-\frac{9}{2}}{\frac{\sqrt{50}}{2}•\sqrt{25}}$=-$\frac{\sqrt{2}}{2}$,
∴异面直线EF与CD′所成的角45°.
故选:B.

点评 本题考查异面直线所成角的求法,是基础题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.若实数x,y满足条件$\left\{\begin{array}{l}x-y≤0\\ x+y≥-2\\ x-2y≥-2\end{array}\right.$,则z=2x+y的最大值是(  )
A.10B.8C.6D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.关于x的不等式x2+ax-2<0在区间[1,4]上有解,则实数a的取值范围为(  )
A.(-∞,1)B.(-∞,1]C.(1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.平面xOy内,动点P到点F($\sqrt{2}$,0)的距离与它到直线x=2$\sqrt{2}$的距离之比为$\frac{{\sqrt{2}}}{2}$;
(1)求动点P的轨迹方程;
(2)设O为原点,若点A在直线y=2上,点B在椭圆C上,且OA⊥OB,求线段AB长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.观察下列式子:1+$\frac{1}{{2}^{2}}$<1+$\frac{1}{2}$,1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$<1+$\frac{2}{3}$,1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{4}^{2}}$<1+$\frac{3}{4}$,…,根据上述规律,第n个不等式应该为1+$\frac{1}{{2}^{2}}$+$\frac{{1}^{\;}}{{3}^{2}}$+…+$\frac{1}{(n+1)^{2}}$<1+$\frac{n}{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.观察下列等式:
1+2+3+…+n=$\frac{1}{2}$n(n+1);
1×2+2×3+3×4+…+n(n+1)=$\frac{1}{3}$n(n+1)(n+2);
1×2×3+2×3×4+3×4×5+…+n(n+1)(n+2)=$\frac{1}{4}$n(n+1)(n+2)(n+3);
照此规律,
1×2×3×4+2×3×4×5+3×4×5×6+…+n(n+1)(n+2)(n+3)=$\frac{1}{5}$n(n+1)(n+2)(n+3)(n+4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知曲线C的极坐标方程是ρ=4cosθ,直线l的参数方程是$\left\{\begin{array}{l}{x=2+\frac{4}{5}t}\\{y=1+\frac{3}{5}t}\end{array}\right.$(t为参数),以极点为平面直角坐标系的原点,极轴为x轴的正半轴建立平面直角坐标系.
(1)将曲线C的极坐标方程化为直角坐标方程、直线l的参数方程化为普通方程;
(2)若直线l与曲线C交于M、N两点,求线段MN的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设函数f(x)为奇函数.则函数y=x${\;}^{\frac{1}{5}}$f(x)的图象关于(  )
A.原点对称B.x轴对称C.y轴对称D.直线y=x对称

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.用单位长的不锈钢条焊接如图系列的四面体铁架,图中的小圆圈.表示焊接点,图1两层共4个焊接点,图2三层共10个焊接点,图3四层共20个焊接点,以此类推,图n共有$\frac{n(n+1)(n+2)}{6}$个焊接点(用含n的式子表示).

查看答案和解析>>

同步练习册答案