【题目】《山东省高考改革试点方案》规定:从年高考开始,高考物理、化学等六门选考科目的考生原始成绩从高到低划分为八个等级.参照正态分布原则,确定各等级人数所占比例分别为.选考科目成绩计入考生总成绩时,将至等级内的考生原始成绩,依照等比例转换法则分别转换到八个分数区间,得到考生的等级成绩.
某校级学生共人,以期末考试成绩为原始成绩转换了本校的等级成绩,为学生合理选科提供依据,其中物理成绩获得等级的学生原始成绩统计如下
成绩 | 93 | 91 | 90 | 88 | 87 | 86 | 85 | 84 | 83 | 82 |
人数 | 1 | 1 | 4 | 2 | 4 | 3 | 3 | 3 | 2 | 7 |
(1)从物理成绩获得等级的学生中任取名,求恰好有名同学的等级分数不小于的概率;
(2)待到本级学生高考结束后,从全省考生中不放回的随机抽取学生,直到抽到名同学的物理高考成绩等级为或结束(最多抽取人),设抽取的学生个数为,求随机变量的数学期望(注: ).
【答案】(1)0.29 (2)见解析
【解析】
(1)设物理成绩获得等级的学生原始成绩为,其等级成绩为,由原始成绩与等级成绩的转换公式得到关于 的关系式,即可计算出等级分数不小于的人数,利用古典概型即可计算出恰好有名同学的等级分数不小于的概率。
(2)由题意得,随机抽取人,等级成绩为或的概率为,然后列出学生个数的分布列,即可计算数学期望。
解:(1)设物理成绩获得等级的学生原始成绩为,其等级成绩为.
由转换公式,得.
由,得.
显然原始成绩满足的同学有人,获得等级的学生有人,
恰好有名同学的等级分数不小于的概率为:.
(2)由题意得,随机抽取人,其等级成绩为或的概率为.
学生个数的可能取值为;
,,
,;
其数学期望是:
其中:
①
②
应用错位相减法“①式-②式”得:
故.
科目:高中数学 来源: 题型:
【题目】已知椭圆的右焦点为,设直线与轴的交点为,过点且斜率为的直线与椭圆交于两点,为线段的中点.
(1)若直线的倾斜角为,求的值;
(2)设直线交直线于点,证明:直线.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 的离心率为,过椭圆的焦点且与长轴垂直的弦长为1.
(1)求椭圆C的方程;
(2)设点M为椭圆上第一象限内一动点,A,B分别为椭圆的左顶点和下顶点,直线MB与x轴交于点C,直线MA与y轴交于点D,求证:四边形ABCD的面积为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个暗箱中有形状和大小完全相同的3只白球与2只黑球,每次从中取出一只球,取到白球得2分,取到黑球得3分.甲从暗箱中有放回地依次取出3只球.
(1)求甲三次都取得白球的概率;
(2)求甲总得分ξ的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,直线的参数方程为(其中为参数).在以坐标原点为极点,以轴正半轴为极轴建立的极坐标系中,曲线的极坐标方程为,曲线的直角坐标方程为.
(1)求直线的极坐标方程和曲线的直角坐标方程;
(2)若直线与曲线分别相交于异于原点的点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】两城市和相距,现计划在两城市外以为直径的半圆上选择一点建造垃圾处理场,其对城市的影响度与所选地点到城市的距离有关,对城和城的总影响度为城和城的影响度之和,记点到城的距离为,建在处的垃圾处理场对城和城的总影响度为,统计调查表明:垃圾处理场对城的影响度与所选地点到城的距离的平方成反比,比例系数为4,对城的影响度与所选地点到城的距离的平方成反比,比例系数为,当垃圾处理场建在的中点时,对城和城的总影响度为0.065;
(1)将表示成的函数;
(2)判断上是否存在一点,使建在此处的垃圾处理场对城和城的总影响度最小?若存在,求出该点到城的距离;若不存在,说明理由;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC﹣A1B1C1(侧棱垂直于底面的棱柱)中,CA⊥CB,CA=CB=CC1=2,动点D在线段AB上.
(1)求证:当点D为AB的中点时,平面B1CD⊥上平面ABB1A1;
(2)当AB=3AD时,求平面B1CD与平面BB1C1C所成的锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列五个命题:
①“”是“为R上的增函数”的充分不必要条件;
②函数有两个零点;
③集合,,从A,B中各任意取一个数,则这两数之和等于4的概率是;
④动圆C既与定圆相外切,又与y轴相切,则圆心C的轨迹方程是;
⑤若对任意的正数x,不等式恒成立,则实数a的取值范围是.
其中正确的命题序号是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将红、黑、蓝、白5张纸牌(其中白纸牌有2张)随机分发给甲、乙、丙、丁4个人,每人至少分得1张,则下列两个事件为互斥事件的是( )
A. 事件“甲分得1张白牌”与事件“乙分得1张红牌”
B. 事件“甲分得1张红牌”与事件“乙分得1张蓝牌”
C. 事件“甲分得1张白牌”与事件“乙分得2张白牌”
D. 事件“甲分得2张白牌”与事件“乙分得1张黑牌”
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com