精英家教网 > 高中数学 > 题目详情

已知函数.
(I)若处取得极值,
①求的值;②存在,使得不等式成立,求的最小值;
(II)当时,若上是单调函数,求的取值范围.(参考数据

(1)①,②;(2)

解析试题分析:(1)①根据处取得极值,求导将带入到导函数中,联立方程组求出的值;②存在性恒成立问题,,只需,进入通过求导求出的极值,最值.(2)当的未知时,要根据中分子是二次函数形式按进行讨论.
试题解析:(1)定义域为.
,
因为处取和极值,故,
,解得.
②由题意:存在,使得不等式成立,则只需
,令,令
所以上单调递减,上单调递增,上单调递减
所以处取得极小值,
而最大值需要比较的大小,
,
,
比较与4的大小,而,所以

所以
所以.
(2)当 时,
①当时,上单调递增;
②当时,∵ ,则上单调递增;
③当时,设,只需,从而得,此时上单调递减;
综上可得,.
考点:1.利用导数求函数的极值、最值;2.函数恒成立问题;3.利用单调性求参数范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)当时,不等式恒成立,求实数的取值范围.
(Ⅲ)求证:,e是自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知处取得极值。
(Ⅰ)证明:
(Ⅱ)是否存在实数,使得对任意?若存在,求的所有值;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数 (为常数)
(Ⅰ)=2时,求的单调区间;
(Ⅱ)当时,,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(1)若,求函数的极值;
(2)若函数上单调递减,求实数的取值范围;
(3)在函数的图象上是否存在不同的两点,使线段的中点的横坐标与直线的斜率之间满足?若存在,求出;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中是常数且.
(1)当时,在区间上单调递增,求的取值范围;
(2)当时,讨论的单调性;
(3)设是正整数,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ) 若函数处的切线方程为,求实数的值.
(Ⅱ)当时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设l为曲线C:在点(1,0)处的切线.
(I)求l的方程;
(II)证明:除切点(1,0)之外,曲线C在直线l的下方

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,一矩形铁皮的长为8cm,宽为5cm,在四个角上截去四个相同的小正方形,制成一个无盖的小盒子,问小正方形的边长为多少时,盒子容积最大?

查看答案和解析>>

同步练习册答案