精英家教网 > 高中数学 > 题目详情
精英家教网在平面直角坐标系xOy中,抛物线y=x2上异于坐标原点O的两不同动点A、B满足AO⊥BO(如图所示).则△AOB得重心G(即三角形三条中线的交点)的轨迹方程为
 
分析:设出AB的方程,A,B的坐标,进而把直线与抛物线方程联立消去y,根据韦达定理求得x1+x2和x1x2的表达式,进而利用抛物线方程求得y1y2=的表达式,进而根据AO⊥BO推断出x1x2+y1y2=0,求得b,设△AOB的重心为G(x,y),则x和y的表达式可得,联立后消去k则x和y的关系式可得.
解答:解:显然直线AB的斜率存在,记为k,AB的方程记为:y=kx+b,(b≠0),A(x1,y1),B(x2,y2),将直线方程代入y=x2得:x2-kx-b=0,则有:
△=k2+4b>0①,x1+x2=k②,x1x2=-b③,又y1=x12,y2=x22
∴y1y2=b2
∵AO⊥BO,∴x1x2+y1y2=0,
得:-b+b2=0且b≠0,
∴b=1,代入①验证,满足;
故y1+y2=k(x1+x2)+2=k2+2;
设△AOB的重心为G(x,y),
则x=
x1+x2
3
=
k
3
④,y=
y1+y2
3
=
k2+2
3
⑤,
由④⑤两式消去参数k得:G的轨迹方程为y=3x2+
2
3

故答案为:y=3x2+
2
3
点评:本题主要考查了抛物线的简单性质.上述求轨迹的方法称为“参数法”,一般先设法将动点坐标用“参数”表示,再消参数.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,已知圆心在直线y=x+4上,半径为2
2
的圆C经过坐标原点O,椭圆
x2
a2
+
y2
9
=1(a>0)
与圆C的一个交点到椭圆两焦点的距离之和为10.
(1)求圆C的方程;
(2)若F为椭圆的右焦点,点P在圆C上,且满足PF=4,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,锐角α和钝角β的终边分别与单位圆交于A,B两点.若点A的横坐标是
3
5
,点B的纵坐标是
12
13
,则sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,若焦点在x轴的椭圆
x2
m
+
y2
3
=1
的离心率为
1
2
,则m的值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泰州三模)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.设直线AC与BD的交点为P,求动点P的轨迹的参数方程(以t为参数)及普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东莞一模)在平面直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F1(-1,0),且椭圆C的离心率e=
1
2

(1)求椭圆C的方程;
(2)设椭圆C的上下顶点分别为A1,A2,Q是椭圆C上异于A1,A2的任一点,直线QA1,QA2分别交x轴于点S,T,证明:|OS|•|OT|为定值,并求出该定值;
(3)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=2与圆O:x2+y2=
16
7
相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案