精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xOy中,直角三角形ABC的三个顶点都在椭圆
x2
a2
+y2=1(a>1)
上,其中A(0,1)为直角顶点.若该三角形的面积的最大值为
27
8
,则实数a的值为
3
3
分析:设直线AB的方程为y=kx+1,(k≠0).将直线AB方程与椭圆消去y,解得B的坐标,再用两点之间距离公式,可以算出AB长关于a、k的表达式,同理可得AC长关于a、k的表达式,从而得到Rt△ABC的面积S关于a、k的表达式,根据基本不等式进行讨论,可得△ABC的面积S的最大值为
a4
a(a2-1)
,最后结合题意解关于a的方程,即可得到实数a的值.
解答:解:设直线AB的方程为y=kx+1则直线AC的方程可设为y=-
1
k
x+1,(k≠0)
y=kx+1
x2
a2
+y2=1
消去y,得(1+a2k2)x2+2a2kx=0,所以x=0或x=
-2a2k
1+a2k2

∵A的坐标(0,1),
∴B的坐标为(
-2a2k
1+a2k2
,k•
-2a2k
1+a2k2
+1),即B(
-2a2k
1+a2k2
1-a2k2
1+a2k2

因此,AB=
(0-
-2a2k
1+a2k2
)2+(1-
1-a2k2
1+a2k2
)2
=
1+k2
|2a2k|
1+a2k2

同理可得:AC=
1+
1
k2
|
2a2
k
|
1+
a2
k2

∴Rt△ABC的面积为S=
1
2
AB•AC=
2+k2+
1
k2
2a4
1+a4+a2(k2+
1
k2
)
=
2a4|k+
1
k
|
1+a4+a2(k2+
1
k2
)

令t=|k+
1
k
|
,得S=
2a4t
1+a4+a2(t2-2)
=
2a4
(a2-1)2
t
+a2t 

∵t=|k+
1
k
|
≥2,∴S△ABC
2a4
2
(a2-1)2
t
×a2t
=
a4
a(a2-1)

当且仅当
a2-1
t
=a
t
,即t=
a2-1
a
时,△ABC的面积S有最大值为
a4
a(a2-1)
=
27
8

解之得a=3或a=
3+
297
16

∵a=
3+
297
16
时,t=
a2-1
a
<2不符合题意,
∴a=3
故答案为:3
点评:本题在椭圆上求内接直角三角形面积的最大值问题,着重考查了椭圆的简单几何性质和利用基本不等式讨论函数的最值等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,已知圆心在直线y=x+4上,半径为2
2
的圆C经过坐标原点O,椭圆
x2
a2
+
y2
9
=1(a>0)
与圆C的一个交点到椭圆两焦点的距离之和为10.
(1)求圆C的方程;
(2)若F为椭圆的右焦点,点P在圆C上,且满足PF=4,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,锐角α和钝角β的终边分别与单位圆交于A,B两点.若点A的横坐标是
3
5
,点B的纵坐标是
12
13
,则sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,若焦点在x轴的椭圆
x2
m
+
y2
3
=1
的离心率为
1
2
,则m的值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泰州三模)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.设直线AC与BD的交点为P,求动点P的轨迹的参数方程(以t为参数)及普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东莞一模)在平面直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F1(-1,0),且椭圆C的离心率e=
1
2

(1)求椭圆C的方程;
(2)设椭圆C的上下顶点分别为A1,A2,Q是椭圆C上异于A1,A2的任一点,直线QA1,QA2分别交x轴于点S,T,证明:|OS|•|OT|为定值,并求出该定值;
(3)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=2与圆O:x2+y2=
16
7
相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案