精英家教网 > 高中数学 > 题目详情

【题目】分别表示的三个内角所对边的边长,表示的外接圆半径.

1,求的长;

2)在中,若是钝角,求证:

3)给定三个正实数,其中,问满足怎样的关系时,以为边长,为外接圆半径的不存在,存在一个或存在两个(全等的三角形算作同一个)?在存在的情况下,用表示.

【答案】12)见解析(3)见解析

【解析】

1)先根据正弦定理得,再根据余弦定理求的长;

2)先根据余弦定理得,再根据正弦定理放缩证明结果;

3)先根据正弦定理讨论三角形解的个数,再根据余弦定理求.

(1) 由正弦定理得

所以(负舍);

(2) 因为是钝角,

所以

因此

3)当, 不存在,

时,不存在,

时,存在一个,此时

时,存在一个

此时

时,存在两个

A为锐角时,

A为钝角时,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】分形几何学是一门以不规则几何形态为研究对象的几何学.分形的外表结构极为复杂,但其内部却是有规律可寻的.一个数学意义上分形的生成是基于一个不断迭代的方程式,即一种基于递归的反馈系统.下面我们用分形的方法来得到一系列图形,如图1,线段的长度为a,在线段上取两个点,使得,以为一边在线段的上方做一个正六边形,然后去掉线段,得到图2中的图形;对图2中的最上方的线段作相同的操作,得到图3中的图形;依此类推,我们就得到了以下一系列图形:

记第个图形(图1为第1个图形)中的所有线段长的和为,现给出有关数列的四个命题:

①数列是等比数列;

②数列是递增数列;

③存在最小的正数,使得对任意的正整数 ,都有

④存在最大的正数,使得对任意的正整数,都有

其中真命题的序号是________________(请写出所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线,斜率为的直线经过焦点,且与交于两点满足.

(1)求抛物线的方程;

(2)已知线段的垂直平分线与抛物线交于两点, 为线段的中点,记点到直线的距离为,若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,求a的取值范围;

(2) ,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,过点的直线与抛物线交于两点,线段的垂直平分线交轴于点,若,则点的横坐标为( )

A. 5 B. 4 C. 3 D. 2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若中心在原点的椭圆与双曲线有共同的焦点,且它们的离心率互为倒数,圆的直径是椭圆的长轴,C是椭圆的上顶点,动直线AB过C点且与圆交于A、B两点,CD垂直于AB交椭圆于点D.

(1)求椭圆的方程;

(2)求面积的最大值,并求此时直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,令.

(1)当时,求函数的单调区间及极值;

(2)若关于的不等式恒成立,求整数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对定义在[01]上,并且同时满足以下两个条件的函数fx)称为G函数.

对任意的x∈[01],总有fx≥0

x1≥0x2≥0x1+x2≤1时,总有fx1+x2≥fx1+fx2)成立.已知函数gx=x2hx=2xb是定义在[01]上的函数.

1)试问函数gx)是否为G函数?并说明理由;

2)若函数hx)是G函数,求实数b组成的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】共享单车是城市慢行系统的一种创新模式,对于解决民众出行“最后一公里”的问题特别见效,由于停取方便、租用价格低廉,各色共享单车受到人们的热捧.某自行车厂为共享单车公司生产新样式的单车,已知生产新样式单车的固定成本为20 000元,每生产一辆新样式单车需要增加投入100元.根据初步测算,自行车厂的总收益(单位:元)满足分段函数 其中x是新样式单车的月产量(单位:辆),利润=总收益-总成本.

(1)试将自行车厂的利润y元表示为月产量x的函数;

(2)当月产量为多少件时自行车厂的利润最大?最大利润是多少?

查看答案和解析>>

同步练习册答案