分析 (1)污水处理池的底面积一定,设宽为x米,可表示出长,从而得出总造价f(x),利用基本不等式求出最小值;
(2)由长和宽的限制条件,得自变量x的范围,判断总造价函数f(x)在x的取值范围内的函数值变化情况,求得最小值.
解答 解:(1)设污水处理池的宽为x米,则长为$\frac{162}{x}$米.
则总造价f(x)=400×(2x+2×$\frac{162}{x}$)+248×2x+80×162=1296x+$\frac{1296×100}{x}$+12960
=1296(x+$\frac{100}{x}$)+12960≥1296×2×$\sqrt{x•\frac{100}{x}}$+12960=38880(元),
当且仅当x=$\frac{100}{x}$(x>0),即x=10时取等号.
∴当长为16.2 米,宽为10 米时总造价最低,最低总造价为38 880 元.
(2)由限制条件知$\left\{\begin{array}{l}{0<x≤16}\\{0<\frac{162}{x}≤16}\end{array}\right.$,∴10$\frac{1}{8}$≤x≤16
设g(x)=x+$\frac{100}{x}$(10$\frac{1}{8}$≤x≤16).g(x)在[10$\frac{1}{8}$,16]上是增函数,
∴当x=16时,g(x)有最小值,即f(x)有最小值.
∴当长为16 米,宽为10$\frac{1}{8}$米时,总造价最低.
点评 本题考查了建立函数解析式,利用基本不等式求函数最值的能力,还考查了函数的单调性和运算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 减函数且最小值是2 | B. | 减函数且最大值是2 | ||
C. | 增函数且最小值是2 | D. | 增函数且最大值是2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com