精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,内角ABC的对边分别为abc,已知(sinB+sinC)(bc)=(sinA+sinCa

1)求B

2)已知b4,△ABC的面积为,求△ABC的周长.

【答案】(1) B(2) 24

【解析】

1)利用正弦定理得到a2+c2b2=﹣ac再利用余弦定理得到,解得答案.

2)根据面积公式计算得到ac4,再利用余弦定理得到a+c2,得到周长.

1)∵(sinB+sinC)(bc)=(sinA+sinCa

∴由正弦定理可得:(b+c)(bc)=(a+ca,∴a2+c2b2=﹣ac

cosB,∵B∈(0π),∴B

2)∵b4B,△ABC的面积为acsinBac,∴解得ac4

由余弦定理b2a2+c22accosB,可得16a2+c2+ac=(a+c2ac=(a+c24

解得a+c2, ∴△ABC的周长a+c+b24

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司为了提高利润,从2012年至2018年每年对生产环节的改进进行投资,投资金额与年利润增长的数据如下表:

年 份

2012

2013

2014

2015

2016

2017

2018

投资金额(万元)

4.5

5.0

5.5

6.0

6.5

7.0

7.5

年利润增长(万元)

6.0

7.0

7.4

8.1

8.9

9.6

11.1

(1)请用最小二乘法求出y关于x的回归直线方程;如果2019年该公司计划对生产环节的改进的投资金额是8万元,估计该公司在该年的年利润增长是多少?(结果保留2位小数)

(2)现从2012—2018年这7年中抽取2年进行调查,记=年利润增长-投资金额,求这两年都是>2(万元)的概率.

参考公式:回归方程中,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的公差d≠0,且a1a3a13成等比数列,若a1=1Sn为数列{an}的前n项和,则的最小值为(    )

A.4B.3C.D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某竞赛的题库系统有60%的自然科学类题目,40%的文化生活类题目(假设题库中的题目总数非常大),参赛者需从题库中抽取3个题目作答,有两种抽取方法:方法一是直接从题库中随机抽取3个题目;方法二是先在题库中按照题目类型用分层抽样的方法抽取10个题目作为样本,再从这10个题目中任意抽取3个题目.

(1)两种方法抽取的3个题目中,恰好有1个自然科学类题目和2个文化生活类题目的概率是否相同?若相同,说明理由;若不同,分别计算出两种抽取方法对应的概率.

(2)已知某参赛者抽取的3个题目恰好有1个自然科学类题目和2个文化生活类题目,且该参赛者答对自然科学类题目的概率为,答对文化生活类题目的概率为.设该参赛者答对的题目数为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数=

(1)求函数的单调递增区间;

(2)已知在ABC中,ABC的对边分别为abc,,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点M到定点的距离和它到直线的距离的比是常数

1)求动点M的轨迹方程;

2)令(1)中方程表示曲线C,点S20),过点B10)的直线l与曲线C相交于PQ两点,求△PQS的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线CO为坐标原点,FC的右焦点,过F的直线与C的两条渐近线的交点分别为M、N.OMN为直角三角形,则|MN|=

A. B. 3 C. D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥PABCD中,平面PAD⊥平面ABCDPAPD,四边形ABCD为等腰梯形,BCADBCCDAD1EPA的中点.

1)求证:EB∥平面PCD

2)求平面PAC与平面PCD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】祖暅是我国南北朝时代的伟大科学家,在数学上有突出贡献,他在实践的基础上提出了体积计算原理(祖暅原理):幂势既同,则积不容异.教材中的探究与发现利用祖暅原理将半球的体积转化为一个圆柱与一个圆锥的体积之差,从而得出球的体积计算公式.如图(1)是一种四脚帐篷的示意图,用任意平行于帐篷底面的平面截帐篷,得截面四边形为正方形,该帐篷的三视图如图(2)所示,其中正视图的投影线方向垂直于平面,正视图和侧视图中的曲线均为半径为1的半圆.模仿上述球的体积计算方法,得该帐篷的体积为( ).

图(1 图(2

A.B.C.D.

查看答案和解析>>

同步练习册答案