【题目】江南某湿地公园内有一个以为圆心,半径为20米的圆形湖心洲.该湖心洲的所对两岸近似两条平行线,且两平行线之间的距离为70米.公园管理方拟修建一条木栈道,其路线为(如图,在右侧).其中,与圆相切于点,米.设,满足.
(1)试将木栈道的总长表示成关于的函数,并指出其定义域;
(2)求木栈道总长的最短长度.
科目:高中数学 来源: 题型:
【题目】已知是椭圆与抛物线的一个公共点,且椭圆与抛物线具有一个相同的焦点.
(1)求椭圆及抛物线的方程;
(2)设过且互相垂直的两动直线,与椭圆交于两点,与抛物线交于两点,求四边形面积的最小值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为
(1)在曲线上任取一点,连接,在射线上取一点,使,求点轨迹的极坐标方程;
(2)在曲线上任取一点,在曲线上任取一点,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆()的离心率为,圆与轴正半轴交于点,圆在点处的切线被椭圆截得的弦长为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设圆上任意一点处的切线交椭圆于点,试判断是否为定值?若为定值,求出该定值;若不是定值,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在棱长均相等的四棱锥中, 为底面正方形的中心, ,分别为侧棱,的中点,有下列结论正确的有:( )
A.∥平面B.平面∥平面
C.直线与直线所成角的大小为D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,O为坐标原点,点,,Q为平面上的动点,且,线段的中垂线与线段交于点P.
求的值,并求动点P的轨迹E的方程;
若直线l与曲线E相交于A,B两点,且存在点其中A,B,D不共线,使得,证明:直线l过定点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com