精英家教网 > 高中数学 > 题目详情
13.正三棱锥P-ABC中,有一半球,某底面所在的平面与正三棱锥的底面所在平面重合,正三棱锥的三个侧面都与半球相切,如果半球的半径为2,则当正三棱锥的体积最小时,正三棱锥的高等于2$\sqrt{3}$.

分析 画出图形,设三棱锥的高 PO=x,底面△ABC的AB边上的高 CD=3y,求出x,y的关系,推出体积的表达式,利用函数的导数求出函数的最小值,即可求出高的值.

解答 解:根据题意,画出图形如下,
其中,立体图形只画出了半球的底面.
设三棱锥的高 PO=x,
底面△ABC的AB边上的高 CD=3•OD=3y
在纵切面图形可看出,Rt△PEO∽Rt△POD,
则 $\frac{PO}{EO}$=$\frac{PD}{OD}$,而 PD=$\sqrt{{PO}^{2}+{OD}^{2}}$,即 $\frac{x}{2}$=$\frac{\sqrt{{x}^{2}+{y}^{2}}}{y}$,整理得 x2y2=4x2+4y2
所以 y2=4×$\frac{{x}^{2}}{{x}^{2}-4}$,
而三棱锥P-ABC的体积等于 $\frac{1}{3}$×底面△ABC的面积×高PO,即V=$\frac{1}{3}$×$\frac{1}{2}$×AB×CD×PO=$\frac{1}{3}$×$\frac{1}{2}$×2$\sqrt{3}$y×3y×x=$\sqrt{3}$y2x=4×$\frac{{\sqrt{3}x}^{3}}{{x}^{2}-4}$,
对体积函数求导,得
V′=4×$\frac{\sqrt{3}{x}^{2}({x}^{2}-12)}{({x}^{2}-4)^{2}}$,令V′=0,解得唯一正解 x=2$\sqrt{3}$,
由该体积函数的几何意义可知 x=2$\sqrt{3}$为其体积最小值点,
故三棱锥体积最小时Vmin=24,高为2$\sqrt{3}$.
故答案为:2$\sqrt{3}$.

点评 本题考查几何体的内接球的问题,函数的导数的应用,考查空间想象能力以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.双曲线$\frac{{x}^{2}}{8-k}$+$\frac{{y}^{2}}{4-k}$=1的焦点坐标是(  )
A.(0,±$\sqrt{12-2k}$)B.(±$\sqrt{12-2k}$,0)C.(0,±2)D.(±2,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列说法中不正确的是(  )
A.“所有金属都能导电,铁是金属,所以铁能导电”这种推理属于演绎推理
B.已知数据x1,x2,…,xn的方差是4,则数据-3x1+2015,-3x2+2015,…,-3xn+2015的标准差是6
C.用相关指数R2来刻画回归效果,R2的值越小,说明模型的拟合效果越好
D.若变量y和x之间的相关系数r=-0.9362,则变量y和x之间具有很强的线性相关关系

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)的值域是[-2,3],则函数f(x-2)的值域为(  )
A.[-4,1]B.[0,5]C.[-4,1]∪[0,5]D.[-2,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.若正三棱锥P-ABC的底面边长为2,侧面与底面所成的二面角为60°,求正三棱锥的高和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,PA⊥平面ABC,∠ACB=90°,AB=$\sqrt{2}$,PA=BC=1,求二面角P-BC-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在棱柱ABC-A1B1C1中,底面为正三角形,侧棱长等于底面边长,且侧棱与底面所成的角为60°,顶点为B1在底面ABC上的射影O恰好是AB的中点
(1)求证:B1C⊥C1A;
(2)求二面角C1-AB-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知正方体OABC-O1A1B1C1的棱长为2,对角线O1B上有一点P,棱B1C1上有一点Q.
(1)当Q为B1C1的中点,点P在对角线O1B上运动时,试求|PQ|的最小值.
(2)当Q在B1C1上运动,点P在对角线O1B上运动时,试求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设F2(c,0)(c>0)是双曲线Γ:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点,M是双曲线左支上的一点,线段MF2与圆x2+y2-$\frac{2c}{3}$x+$\frac{{a}^{2}}{9}$=0相切于D,且|MF2|=3|DF2|,则双曲线Γ的离心率为(  )
A.$\sqrt{3}$B.2C.$\sqrt{5}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

同步练习册答案