精英家教网 > 高中数学 > 题目详情

【题目】华罗庚中学高二排球队和篮球队各有10名同学,现测得排球队10人的身高(单位:)分别是:162170171182163158179168183168,篮球队10人的身高(单位:)分别是:170159162173181165176168178179.

(1)请根据两队身高数据作出茎叶图,并分析指出哪个队的身高数据方差较小(无需计算)以及排球队的身高数据的中位数与众数;

(2)现从两队所有身高超过的同学中随机抽取三名同学,则恰好两人来自排球队一人来自篮球队的概率是多少?

【答案】1)茎叶图见解析,篮球队的身高数据方差较小.排球队的身高数据中位数为169,众数168

2

【解析】

1)根据已知数据可画出茎叶图;根据茎叶图可知篮球队的身高数据更集中,可知方差较小;由中位数和众数的定义可求得结果;

2)利用列举法可得到所有基本事件个数和满足题意的基本事件个数,由古典概型概率公式可求得结果.

(1)茎叶图如图所示:

由茎叶图可知,排球队的平均身高为,篮球队的平均身高为,可知篮球队的身高在平均数附近的集中程度高于排球队的集中程度,由此可知:篮球队的身高数据方差较小.

将排球队的数据按从小到大数据排列,则中位数为:

排球队身高数据中,个数最多,则众数.

2)两队所有身高超过的同学恰有人,其中人来自排球队,记为人来自篮球队,记为,则从人中抽取名同学的基本事件为:

,共个;

其中恰好两人来自排球队一人来自篮球队所含的事件有:,共个,

恰好两人来自排球队,一人来自篮球队的概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设点分别是椭圆的左、右焦点,为椭圆上任意一点,且的最小值为0.

(1)求椭圆的方程;

(2)如图,动直线与椭圆有且仅有一个公共点,点是直线上的两点,且,求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若函数的切线与直线垂直,求的值;

2)讨论函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是直角梯形,

1)证明:平面

2)求点到平面的距离;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了20141月至20171月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论正确的是(

A.月接待游客逐月增加

B.年接待游客量逐年减少

C.各年的月接待游客量高峰期大致在67

D.各年1月至6月的月接待游客量相对于7月至12月,波动性较小,变化比较稳定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60/盒、65/盒、80/盒、90/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%

①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;

②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近两年来,以《中国诗词大会》为代表的中国文化类电视节目带动了一股中国文化热潮.某台举办闯关答题比赛,共分两轮,每轮共有4类题型,选手从前往后逐类回答,若中途回答错误,立马淘汰,若全部回答正确,就能获得一枚复活币并进行下一轮答题,两轮都通过就可以获得最终奖金.选手在第一轮闯关获得的复活币,系统会在下一轮答题中自动使用,即下一轮重新进行闯关答题时,在某一类题型中回答错误,自动复活一次,视为答对该类题型.若某选手每轮的4类题型的通过率均分别为,则该选手进入第二轮答题的概率为_________;该选手最终获得奖金的概率为_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现从某医院中随机抽取了位医护人员的关爱患者考核分数(患者考核:分制),用相关的特征量表示;医护专业知识考核分数(试卷考试:分制),用相关的特征量表示,数据如下表:

(1)求关于的线性回归方程(计算结果精确到);

(2)利用(1)中的线性回归方程,分析医护专业考核分数的变化对关爱患者考核分数的影响,并估计当某医护人员的医护专业知识考核分数为分时,他的关爱患者考核分数(精确到).

参考公式及数据:回归直线方程中斜率和截距的最小二乘法估计公式分别为

,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为迎接国庆汇演,学校拟对参演的班级进行奖励性加分表彰,每选中一个节目,其班级量化考核积分加3.某班级准备了三个文娱节目,这三个节目被选中的概率分别为,且每个节目是否被选中是相互独立的.

1)求该班级被加分的概率;

2)求该班级获得奖励性积分的分布列与数学期望.

查看答案和解析>>

同步练习册答案