精英家教网 > 高中数学 > 题目详情

【题目】在北京召开的第24届国际数学家大会会标如图所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若直角三角形中较小的锐角记作,大正方形的面积是1,小正方形的面积是的值等于(

A. 1 B. C. D.

【答案】D

【解析】

由已知可以设三角形短直角边为x,在直角三角形中,我们构造出关于x的方程,解方程求出三角形各边长,即可得到θ的各三角函数值,进而得到sin2θ﹣cos2θ的值.

解:设三角形短直角边为x

S小正方形=

∴小正方形边长=

∴直角三角形另一条直角边为x+

S大正方形=1

∴大正方形边长=1

根据勾股定理,x2+(x+2=12

解得x=

sinθ=,cosθ=

sin2θ﹣cos2θ=﹣

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若关于x的不等式a﹣ax>ex(2x﹣1)(a>﹣1)有且仅有两个整数解,则实数a的取值范围为(
A.(﹣ ]
B.(﹣1, ]
C.(﹣ ,﹣ ]
D.(﹣ ,﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的偶函数,且当时, .现已画出函数轴左侧的图象,如图所示,并根据图象:

(1)直接写出函数 的增区间;

(2)写出函数 的解析式;

(3)若函数 ,求函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l过点A(0,4),且在两坐标轴上的截距之和为1.

(Ⅰ)求直线l的方程;

(Ⅱ)若直线l1与直线l平行,且l1l间的距离为2,求直线l1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,已知曲线C1:ρ=2cosθ,将曲线C1上的点向左平移一个单位,然后纵坐标不变,横坐标伸长到原来的2倍,得到曲线C,又已知直线l: (t是参数),且直线l与曲线C交于A,B两点.
(1)求曲线C的直角坐标方程,并说明它是什么曲线;
(2)设定点P( ,0),求|PA|+|PB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在图中的算法中,如果输入A=2016,B=98,则输出的结果是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为偶函数,且函数图象的两相邻对称轴间的距离为.

(1)求的值;

(2)求函数的对称轴方程;

(3)当时,方程有两个不同的实根,求m的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆上的焦点为,离心率为

(1)求椭圆方程;

2)设过椭圆顶点,斜率为的直线交椭圆于另一点,交轴于点,且 成等比数列,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知DEF三边所在的直线分别为l1:x=-2,l2x+y-4=0,l3xy-4=0,CDEF的内切圆.

(1)求⊙C的方程;

(2)设⊙Cx轴交于AB两点,点P在⊙C内,且满足.记直线PAPB的斜率分别为k1k2k1 k2的取值范围.

查看答案和解析>>

同步练习册答案