精英家教网 > 高中数学 > 题目详情
已知动点P在椭圆
x2
25
+
y2
16
=1上,若A点坐标为(3,0),且|
AM
|=1,且
PM
AM
=0,则|
PM
|的最小值是(  )
A.
2
B.
3
C.2D.3
PM
AM
=0,∴
PM
AM
=0,
∴|
PM
|2=|
AP
|2-|
AM
|2
∵|
AM
|=1,∴|
AM
|2=1,
∴|
PM
|2=|
AP
|2-|
AM
|2=|
AP
|2-1,
∵|
AM
|=1,
∴点M的轨迹为以为以点A为圆心,1为半径的圆,
∵|
PM
|2=|
AP
|2-1,|
AP
|越小,|
PM
|越小,
结合图形知,当P点为椭圆的右顶点时,
|
AP
|取最小值a-c=5-3=2,
∴|
PM
|最小值是
4-1
=
3

故选:B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知F1,F2为椭圆
x2
25
+
y2
9
=1
的两个焦点,A,B为过F1的直线与椭圆的两个交点,则△AF1F2的周长为______△ABF2周长为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知离心率为
1
2
的椭圆C,其中心在原点,焦点在坐标轴上,该椭圆的一个短轴顶点与其两焦点构成一个面积为4
3
的等腰三角形,则椭圆C的长轴长为(  )
A.4B.8C.4
2
D.8
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面直角坐标系xOy中,已知椭圆
x2
4
+
y2
3
=1的左焦点为F,直线x-y-1=0,x-y+1=0与椭圆分别相交于点A,B,C,D,则AF+BF+CF+DF=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的焦点分别为F1,F2,若该椭圆上存在一点P使得∠F1PF2=60°,则椭圆离心率的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面直角坐标系中,已知△ABC的顶点A(-5,0),B(5,0)且顶点C在椭圆
x2
169
+
y2
144
=1
上,则
sinA+sinB
sinC
=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若两集合A=[0,3],B=[0,3],分别从集合A、B中各任取一个元素m、n,即满足m∈A,n∈B,记为(m,n),
(Ⅰ)若m∈Z,n∈Z,写出所有的(m,n)的取值情况,并求事件“方程
x2
m+1
+
y2
n+1
=1
所对应的曲线表示焦点在x轴上的椭圆”的概率;
(Ⅱ)求事件“方程
x2
m+1
+
y2
n+1
=1
所对应的曲线表示焦点在x轴上的椭圆,且长轴长大于短轴长的
2
倍”的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

点A、B分别是椭圆
x2
36
+
y2
20
=1长轴的左、右焦点,点F是椭圆的右焦点.点P在椭圆上,且位于x轴上方,PA⊥PF.
(1)求P点的坐标;
(2)设M是椭圆长轴AB上的一点,M到直线AP的距离等于|MB|,求椭圆上的点到点M的距离d的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给出如下四个命题:
①方程x2+y2-2x+1=0表示的图形是圆;
②若椭圆的离心率为
2
2
,则两个焦点与短轴的两个端点构成正方形;
③抛物线x=2y2的焦点坐标为(
1
8
,0
);
④双曲线
y2
49
-
x2
25
=1的渐近线方程为y=±
5
7
x.
其中正确命题的序号是______.

查看答案和解析>>

同步练习册答案