精英家教网 > 高中数学 > 题目详情
数列{an}满足a1=2,an+1=3an+2,则数列的通项公式为
an=3n-1
an=3n-1
分析:两边同加1,可得an+1+1=3(an+1),从而{an+1}是以a1+1=3为首项,q=3为公比的等比数列,故可求.
解答:解:由题意an+1=3an+2,可得an+1+1=3(an+1)
∴{an+1}是以a1+1=3为首项,q=3为公比的等比数列
an+1=3•3n-1=3n
故an=3n-1
故答案为:an=3n-1.
点评:本题以数列递推式为载体,考查等比数列,关键是运用整体思想,把{an+1}看成数列的通项,进行求解,也可以看成是等价转化成等比数列的一种解题方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设b>0,数列{an}满足a1=b,an=
nban-1an-1+n-1
(n≥2)
(1)求数列{an}的通项公式;
(4)证明:对于一切正整数n,2an≤bn+1+1.

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}满足a1=1,a2=2,an=
an-1an-2
(n≥3)
,则a17等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,数列{an}满足a1=a,an+1=a+
1
an
,n=1,2,….

(I)已知数列{an}极限存在且大于零,求A=
lim
n→∞
an
(将A用a表示);
(II)设bn=an-A,n=1,2,…,证明:bn+1=-
bn
A(bn+A)

(III)若|bn|≤
1
2n
对n=1,2,…
都成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}满足a1=1,an=
12
an-1+1(n≥2)

(1)若bn=an-2,求证{bn}为等比数列;    
(2)求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}满足a1=
4
3
,an+1=an2-an+1(n∈N*),则m=
1
a1
+
1
a2
+…+
1
a2013
的整数部分是(  )

查看答案和解析>>

同步练习册答案