分析 利用已知条件求出Q坐标,求出P的坐标,代入双曲线方程,即可求解双曲线的离心率.
解答 解:双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1、F2,P为双曲线C上一点,Q为双曲线C渐近线上一点,P、Q均位于第一象限,且$\overrightarrow{QP}$=$\overrightarrow{P{F}_{2}}$,$\overrightarrow{Q{F}_{1}}$•$\overrightarrow{Q{F}_{2}}$=0,
可知P是Q,F2的中点,$\overrightarrow{Q{F}_{1}}$⊥$\overrightarrow{Q{F}_{2}}$,
Q在直线bx-ay=0上,并且|OP|=c,则Q(a,b),则P($\frac{a+c}{2}$,$\frac{b}{2}$),
代入双曲线方程可得:$\frac{(a+c)^{2}}{4{a}^{2}}-\frac{1}{4}=1$,
1+e=$\sqrt{5}$.
可得e=$\sqrt{5}$-1.
故答案为:$\sqrt{5}-1$.
点评 本题考查双曲线的简单性质的应用,离心率的求法,考查转化思想以及计算能力.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{7}$ | B. | $\frac{4}{3}$ | C. | -$\frac{1}{7}$ | D. | -$\frac{4}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 0个 | B. | 1个 | ||
C. | 2个 | D. | 不确定,随k的变化而变化 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | A=4 | B. | ω=1 | C. | φ=$\frac{π}{6}$ | D. | B=4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1+|x+y|+|xy|≥|x|+|y| | B. | 1+2|x+y|≥|x|+|y| | C. | 1+2|xy|≥|x|+|y| | D. | |x+y|+2|xy|≥|x|+|y| |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 45° | B. | 90° | C. | 120° | D. | 135° |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com