精英家教网 > 高中数学 > 题目详情

【题目】已知函数,函数.

1)讨论的单调性;

2)证明:当时,.

3)证明:当时,.

【答案】(1)答案不唯一,具体见解析(2)证明见解析(3)证明见解析

【解析】

1)求出的定义域,导函数,对参数分类讨论得到答案.

(2)设函数,求导说明函数的单调性,求出函数的最大值,即可得证.

3)由(1)可知,可得,即即可得证.

1)解:的定义域为

时,,则上单调递增;

时,令,得,令,得,则上单调递减,在上单调递增;

时,,则上单调递减;

时,令,得,令,得,则上单调递增,在上单调递减;

2)证明:设函数,则.

因为,所以

,从而上单调递减,

所以,即.

3)证明:当时,.

由(1)知,,所以

.

时,

所以

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某中学2018年的高考考生人数是2015年高考考生人数的倍,为了更好地对比该校考生的升学情况,统计了该校2015年和2018年的高考情况,得到如图柱状图:

则下列结论正确的是  

A. 与2015年相比,2018年一本达线人数减少

B. 与2015年相比,2018年二本达线人数增加了

C. 2015年与2018年艺体达线人数相同

D. 与2015年相比,2018年不上线的人数有所增加

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为奇函数,且的极小值为.

(Ⅰ)求的值;

(Ⅱ)若过点可作三条不同的直线与曲线相切,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系内,动点到定点的距离与到定直线距离之比为

(Ⅰ)求动点的轨迹的方程;

(Ⅱ)设点是轨迹上两个动点直线与轨迹的另一交点分别为且直线的斜率之积等于,问四边形的面积是否为定值?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}的前n项和为Sn,已知:a52a2+3a2a14成等比数列.

(Ⅰ)求数列{an}的通项公式;

(Ⅱ)设正项数列{bn}满足bn2Sn+1Sn+1+2,求证:b1+b2++bnn+1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,单位圆上有一点,点以点为起点按逆时针方向以每秒弧度作圆周运动,点的纵坐标是关于时间的函数,记作.

1)当时,求

2)若将函数向左平移个单位长度后,得到的曲线关于轴对称,求的最小正值,并求此时的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学棋艺协会定期举办以棋会友的竞赛活动,分别包括中国象棋围棋五子棋国际象棋四种比赛,每位协会会员必须参加其中的两种棋类比赛,且各队员之间参加比赛相互独立;已知甲同学必选中国象棋,不选国际象棋,乙同学从四种比赛中任选两种参与.

1)求甲参加围棋比赛的概率;

2)求甲、乙两人参与的两种比赛都不同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABCA1B1C1中,AA1ACA1BAC1,设OAC1A1C的交点,点PBC的中点.求证:

1OP∥平面ABB1A1

2)平面ACC1⊥平面OCP.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】双曲线定位法是通过测定待定点到至少三个已知点的两个距离差所进行的一种无线电定位.通过船(待定点)接收到三个发射台的电磁波的时间差计算出距离差,两个距离差即可形成两条位置双曲线,两者相交便可确定船位.我们来看一种简单的特殊状况;如图所示,已知三个发射台分别为且刚好三点共线,已知海里,海里,现以的中点为原点,所在直线为轴建系.现根据船接收到点与点发出的电磁波的时间差计算出距离差,得知船在双曲线的左支上,若船上接到台发射的电磁波比台电磁波早(已知电磁波在空气中的传播速度约为1海里),则点的坐标(单位:海里)为(

A.B.

C.D.

查看答案和解析>>

同步练习册答案