精英家教网 > 高中数学 > 题目详情
15.在数列{an}中,设a1=a2=2,a3=4,若数列$\left\{{\frac{{{a_{n+1}}}}{a_n}}\right\}$为等差数列,则a5=48.

分析 利用等差数列的通项公式即可得出.

解答 解:$\frac{{a}_{2}}{{a}_{1}}$=1,$\frac{{a}_{3}}{{a}_{2}}$=2,
∵数列$\left\{{\frac{{{a_{n+1}}}}{a_n}}\right\}$为等差数列,其首项为1,公差d=1.
∴$\frac{{a}_{n+1}}{{a}_{n}}$=1+(n-1)=n,
∴a4=3a3=12,
a5=4a4=48.
故答案为:48.

点评 本题考查了等差数列的通项公式、递推关系的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知$f(x)=\left\{\begin{array}{l}2x-3(x>0)\\{e^x}(x<0)\end{array}\right.$,则f[f(1)]=(  )
A.eB.$\frac{1}{e}$C.e2D.$\frac{1}{e^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知f(x)=3x,若实数x1,x2,…x2015满足x1+x2+…+x2015=3,则f(x1)f(x2)…f(x2015)的值=27.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知tan(π+α)=2,计算
(Ⅰ)$\frac{{2cos(\frac{π}{2}+α)-cos(π-α)}}{{sin(\frac{π}{2}-α)-3sin(π+α)}}$;
(Ⅱ)$\frac{{{{sin}^3}α-cosα}}{{{{sin}^3}α+2cosα}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.抛物线y=4x2的焦点到准线的距离是$\frac{1}{8}$,准线方程为y=-$\frac{1}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆的一个顶点为A(0,-1),焦点在x轴上,若右焦点到直线x-y+2$\sqrt{2}$=0的距离为3.
(1)求椭圆的方程;
(2)设椭圆与直线y=kx+m(k≠0)相交于不同的两点M、N,线段MN的中点为E,MN⊥AE,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知关于x的不等式x2-mx-2n<0的解集为(-1,3)
(1)求不等式x2-x-m>0的解集;
(2)求不等式组$\left\{\begin{array}{l}{{x}^{2}-2nx+m≤0}\\{x-y+1≥0}\\{2x+3y≥6}\end{array}\right.$所表示的平面区域的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设命题p:a>b>0的必要条件是$\frac{1}{a}$<$\frac{1}{b}$;命题q:y=sinx不是周期函数,则下列命题中为真命题的是(  )
A.p∧qB.¬p∧¬qC.¬p∨qD.p∨¬q

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知△ABC为非直角三角形,其内角A、B、C的对边分别为a、b、c.且有$\sqrt{3}sin\frac{C}{2}co{s}^{2}\frac{B}{2}-cos\frac{C}{2}co{s}^{2}\frac{B}{2}$-$\frac{\sqrt{3}}{2}sin\frac{C}{2}+\frac{1}{2}cos\frac{C}{2}$=0.
(])求角C;
(2)若c=3,sinB=3sinA,求a,b的值.

查看答案和解析>>

同步练习册答案