精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线C:y2=2px(p>0),直线l与抛物线C相交于A,B两点,P为抛物线上一点,当直线l过抛物线焦点时,|AB|的最小值为2.
(Ⅰ)求抛物线C的方程;
(Ⅱ)若AB的中点为(3,1),且直线PA,PB的倾斜角互补,求△PAB的面积.

【答案】解:(Ⅰ)∵抛物线C:y2=2px(p>0),直线l与抛物线C相交于A,B两点,P为抛物线上一点,

当直线l过抛物线焦点时,|AB|的最小值为2,

∴2p=2,解得p=1,

∴抛物线C的方程为y2=2x.

(Ⅱ)设A(x1,y1),B(x2,y2),P(x0,y0),

设直线l的方程为x=my+n,代入抛物线方程得y2﹣2my﹣2n=0,

y1+y2=2m,y1y2=﹣2n,

∵AB的中点为(3,1),∴2m=2,即m=1,

∴直线l的方程为x=y+2,

∴y1+y2=2,y1y2=﹣4,

∴|AB|= =2

∵kAP+kBP= = =0,

∴2y0+y1+y2=0,∴y0=﹣1,

∴P( ),点P到直线l的距离d=

∴△PAB的面积为 |AB|d=


【解析】(Ⅰ)当直线l过抛物线焦点时,|AB|的最小值为2,由此得到2p=2,从而能求出抛物线C的方程.(Ⅱ)设直线l的方程为x=my+n,代入抛物线方程得y2﹣2my﹣2n=0,利用韦达定理结合AB的中点为(3,1),求出m=1,从而直线l的方程为x=y+2,由此利用弦长公式、直线PA,PB的倾斜角互补、点到直线的距离公式,结合已知条件能求出△PAB的面积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,∠ABC=45°,∠BAC=90°,AD是BC上的高,沿AD把△ABD折起,使∠BDC=90°.

(1)证明:平面ADB⊥平面BDC;

(2)若BD=1,求三棱锥D-ABC的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国的高铁技术发展迅速,铁道部门计划在两城市之间开通高速列车,假设列车在试运行期间,每天在两个时间段内各发一趟由城开往城的列车(两车发车情况互不影响),城发车时间及概率如下表所示:

发车

时间

概率

若甲、乙两位旅客打算从城到城,他们到达火车站的时间分别是周六的和周日的(只考虑候车时间,不考虑其他因素).

(1)设乙候车所需时间为随机变量(单位:分钟),求的分布列和数学期望

(2)求甲、乙两人候车时间相等的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知n∈N* , Sn=(n+1)(n+2)…(n+n),
(Ⅰ)求 S1 , S2 , S3 , T1 , T2 , T3
(Ⅱ)猜想Sn与Tn的关系,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 =1(a>0,b>0)的左、右焦点分别为F1、F2 , 过右焦点F2且与x轴垂直的直线与双曲线两条渐近线分别交于A,B两点,若△ABF1为等腰直角三角形,且|AB|=4 ,P(x,y)在双曲线上,M( ),则|PM|+|PF2|的最小值为(
A. ﹣1
B.2
C.2 ﹣2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体中,M,N,E,F分别是棱A1B1,A1D1,B1C1,C1D1的中点,求证:平面AMN∥平面EFDB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个圆柱形圆木的底面半径为1 m,长为10 m,将此圆木沿轴所在的平面剖成两部分.现要把其中一部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形ABCD如图所示,其中O为圆心,C,D在半圆上,设,木梁的体积为V单位:m3,表面积为S单位:m2

1求V关于θ的函数表达式;

2的值,使体积V最大;

3问当木梁的体积V最大时,其表面积S是否也最大?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中.

图(1图(2

(Ⅰ)如图(1)求与平面所成的角

(Ⅱ)如图(2)求证: ∥平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设z1 , z2是复数,则下列命题中的假命题是(
A.若|z1﹣z2|=0,则 =
B.若z1= ,则 =z2
C.若|z1|=|z2|,则z1 =z2
D.若|z1|=|z2|,则z12=z22

查看答案和解析>>

同步练习册答案