科目:高中数学 来源: 题型:解答题
已知函数
(1)若函数在的单调递减区间(—∞,2],求函数在区间[3,5]上的最大值.
(2)若函数在在单区间(—∞,2]上是单调递减,求函数的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口的O北偏西30°且与该港口相距20海里的A处,并正以30海里/小时的航行速度沿正东方向匀速行驶. 假设该小艇沿直线方向以v海里/小时的航行速度匀速行驶,经过t小时与轮船相遇.
(Ⅰ)若希望相遇时小艇的航行距离最小,则小艇航行时间应为多少小时?
(Ⅱ)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某同学利用暑假时间到一家商场勤工俭学,该商场向他提供了三种付款方式:第一种,每天支付38圆;第二种,第一天付4元,第二天付8元,第三天付12元,以此类推:第三种,第一天付0.4元,以后每天比前一天翻一番(即增加一倍),
你会选择哪种方式领取报酬呢?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)
某公司生产一种电了仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:
,其中是仪器的月产量。
⑴将利润表示为月产量的函数。
⑵当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收益―总成本=利润)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com