精英家教网 > 高中数学 > 题目详情

如图,在四棱锥中,底面ABCD是正方形,侧棱底面ABCDEPC的中点,作PB于点F

(I) 证明: PA∥平面EDB
(II) 证明:PB⊥平面EFD

(1)结合线面的判定定理,根据题意得到PA∥EO是解题的关键一步
(2)根据已知的线面垂直可知PD⊥底面ABCD且DC?底面ABCD,∴PD⊥DC
,同时可知同样由PD⊥底面ABCD,得PD⊥BC.进而推理得到BC⊥平面PDC.结合判定定理得到证明。

解析试题分析:解:(1)证明:连接AC,AC交BD于O,连接EO.
∵底面ABCD是正方形,∴点O是AC的中点
在△PAC中,EO是中位线,∴PA∥EO
而EO?平面EDB且PA?平面EDB,
所以,PA∥平面EDB
(2)证明:
∵PD⊥底面ABCD且DC?底面ABCD,∴PD⊥DC
∵PD=DC,可知△PDC是等腰直角三角形,而DE是斜边PC的中线,
∴DE⊥PC.①
同样由PD⊥底面ABCD,得PD⊥BC.
∵底面ABCD是正方形,有DC⊥BC,∴BC⊥平面PDC.
而DE?平面PDC,∴BC⊥DE.②
由①和②推得DE⊥平面PBC
而PB?平面PBC,∴DE⊥PB
又EF⊥PB且DE∩EF=E,所以PB⊥平面EFD.
考点:线面垂直以及线线垂直的判定问题
点评:本小题考查直线与平面平行,直线与平面垂直,二面角等基础知识,考查空间想象能力和推理论证能力

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,已知两个正方形ABCD 和DCEF不在同一平面内,且平面ABCD ⊥平面DCEF,M,N分别为AB,DF的中点。

(1)求直线MN与平面ABCD所成角的正弦值;
(2)求异面直线ME与BN所成角的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)
如图,在底面是直角梯形的四棱锥S-ABCD中, 


(1)求四棱锥S-ABCD的体积;
(2)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)如图,在多面体ABCDE中,,,是边长为2的等边三角形,CD与平面ABDE所成角的正弦值为.

(1)在线段DC上是否存在一点F,使得,若存在,求线段DF的长度,若不存在,说明理由;
(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
如图,在棱长为3的正方体中,.

⑴求两条异面直线所成角的余弦值;
⑵求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
如图,在四棱锥P—ABCD中,底面ABCD为直角梯形,AD∥BC,BAD=90°,PA底面ABCD,且PA=AD=AB=2BC=2,M、N分别为PC、PB的中点.

(Ⅰ)求证:PB平面ADMN;
(Ⅱ)求四棱锥P-ADMN的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,底面为直角梯形ABCD,AD∥BC,∠BAD=90O,PA⊥底面ABCD,且PA=AD=AB=2BC,M,N分别为PC,PB的中点.(1)求证:PB⊥DM;(2)求CD与平面ADMN所成角的正弦值;(3)在棱PD上是否存在点E,且PE∶ED=λ,使得二面角C-AN-E的平面角为60o.若存在求出λ值,若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图所示,已知S是正三角形ABC所在平面外的一点,且SA=SB=SC,SG为△SAB上的高,D、E、F分别是AC、BC、SC的中点,试判断SG与平面DEF的位置关系,并给予证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直三棱柱(侧棱垂直于底面的棱柱),底面中    ,棱分别为的中点.

(1)求 >的值;
(2)求证:
(3)求.

查看答案和解析>>

同步练习册答案