精英家教网 > 高中数学 > 题目详情
如图,F1、F2是椭圆=1(a>b>0)的左、右焦点,点M在x轴上,且,过点F2的直线与椭圆交于A、B两点,且AM⊥x轴,·=0.

(1)求椭圆的离心率;
(2)若△ABF1的周长为,求椭圆的方程.
(1)(2)=1.
(1)设F1(-c,0),F2(c,0),A(x0,y0),椭圆的离心率为e,则M,x0c.
=e,∴|AF1|=a+ex0.同理,|AF2|=a-ex0.
·=0,∴AF1⊥AF2,∴|AF1|2+|AF2|2=|F1F2|2
∴(a+ex0)2+(a-ex0)2=4c2,即a2+e2=2c2.
∵x0c,∴a2+e2·c2=2c2,∴1+e4=2e2,即3e4-8e2+4=0,
∴e2或2(舍),∴椭圆的离心率e=.
(2)∵△ABF2的周长为4,∴4a=4,∴a=.又,∴c=2,∴b2=2.
∴椭圆方程为=1.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知是椭圆E:的两个焦点,抛物线的焦点为椭圆E的一个焦点,直线y=上到焦点F1,F2距离之和最小的点P恰好在椭圆E上,

(1)求椭圆E的方程;
(2)如图,过点的动直线交椭圆于A、B两点,是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知曲线E:ax2+by2=1(a>0,b>0),经过点M的直线l与曲线E交于点A、B,且=-2.
(1)若点B的坐标为(0,2),求曲线E的方程;
(2)若a=b=1,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知△OFQ的面积为S,且·=1.设||=c(c≥2),S=c.若以O为中心,F为一个焦点的椭圆经过点Q,当||取最小值时,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直线l经过点(1,0)且一个方向向量d=(1,1).椭圆C:=1(m>1)的左焦点为F1.若直线l与椭圆C交于A,B两点,满足·=0,求实数m的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若点O和点F分别为椭圆=1的中心和左焦点,点P为椭圆上的任意一点,则·的最大值为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆=1的焦点为F1、F2,点P为椭圆上的动点,当∠F1PF2为钝角时,求点P的横坐标x0的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆和双曲线有相同的焦点,点为椭圆和双曲线的一个交点,则的值为(     )
A.16B.25C.9D.不为定值

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,F1,F2是椭圆C1:+y2=1与双曲线C2的公共焦点,A,B分别是C1,C2在第二、四象限的公共点.若四边形AF1BF2为矩形,则C2的离心率是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案