精英家教网 > 高中数学 > 题目详情

【题目】已知全集U=R,集合A={x|x2-11x+18<0},B={x|-2≤x≤5}.

(1)求ABB∪(UA);

(2)已知集合C={x|axa+2},若C=C,求实数a的取值范围.

【答案】(1){x|2x≤5}; {x|x≤5x≥9}(2)(-∞,-4)∪(5,+∞)

【解析】

(1)化简集合A,根据补集与并集和交集的定义计算即可;(2)根据题意,利用集合的定义与运算性质,列不等式组求出a的取值范围.

1)集合A={x|x2-11x+18<0}={x|2<x<9},

全集U=R,则UA={x|x≤2x≥9};

B={x|-2≤x≤5},则AB={x|2<x≤5};

B∪(UA)={x|x≤5x≥9};

(2)集合C={x|axa+2},B={x|-2≤x≤5},

则:UB={x|x<-2x>5},

CUB=C

CUB

需满足:a+2<-2a>5,

解得:a<-4a>5,

所以实数a的取值范围是(-∞,-4)∪(5,+∞).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】求函数y=的值的程序框图如图所示.

(1)指出程序框图中的错误,并写出算法;

(2)重新绘制解决该问题的程序框图,并回答下面提出的问题.

要使输出的值为正数,输入的x的值应满足什么条件?

要使输出的值为8,输入的x值应是多少?

要使输出的y值最小,输入的x值应是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)若,试判断函数的零点个数;

(2)若函数上为增函数,求整数的最大值.

(可能要用到的数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数y=f(x)满足f(﹣x)+f(x)=0且f(x+1)=f(x﹣1),若x∈(0,1)时,f(x)=log2 ,则y=f(x)在(1,2)内是(
A.单调增函数,且f(x)<0
B.单调减函数,且f(x)<0
C.单调增函数,且f(x)>0
D.单调增函数,且f(x)>0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)已知,证明:

(2)已知 ,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 是奇函数.

1)求实数的值;

2)判断函数上的单调性,并给出证明;

3)当时,函数的值域是,求实数的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f

1)如果函数的单调递减区间为,求函数的解析式;

2)在(1)的条件下,求函数的图象在点处的切线方程;

3)若不等式恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC-A1B1C1中,CC1底面ABCACCB,点MN分别是B1C1BC的中点.

(1)求证:MB平面AC1N

(2)求证:AC⊥MB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某上市股票在30天内每股的交易价格(元)与时间(天)组成有序数对,点落在图中的两条线段上;该股票在30天内的日交易量(万股)与时间(天)的部分数据如下表所示,且满足一次函数关系,

4

10

16

22

(万股)

36

30

24

18

那么在这30天中第几天日交易额最大( )

A. 10 B. 15 C. 20 D. 25

查看答案和解析>>

同步练习册答案