精英家教网 > 高中数学 > 题目详情

【题目】已知函数处的切线方程为.

(1)求实数的值;

(2)若有两个极值点,求的取值范围并证明.

【答案】1;(2,见解析.

【解析】

(1)根据导数的几何意义即可求出,再利用切点既在函数图象上也在切线上,可得,即可求出的值;

(2)有两个极值点,问题转化为,即有两个不相等的正实根,对分为讨论,对时再结合判别式及对称轴再分为,即可求出的取值范围;而,利用根与系数的关系求出,代入即可得到答案.

(1),由已知得,故,所以

,解得.

(2)由(1)可知,所以

时,上为增函数,没有极值点,

时,令,其对称轴方程为

①若时,,此时且不恒为零,

上为减函数,没有极值点.

②若时,,由,即

的两根为不妨设

,故

极小值

极大值

综上可知:求的取值范围是.

此时,所以

,得,故

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为菱形,,侧棱底面,点的中点,作,交于点.

1)求证:平面

2)求证:

3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知方程表示的曲线为的图象,对于函数有如下结论:①上单调递减;②函数至少存在一个零点;③的最大值为;④若函数图象关于原点对称,则由方程所确定;则正确命题序号为( )

A.①③B.②③C.①④D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设各项均为正数的数列{an}的前n项和为Sn,满足:对任意的nN*,都有an+1+Sn+11,又a1

1)求数列{an}的通项公式;

2)令bnlog2an,求nN*

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个结论:

①在回归分析模型中,残差平方和越大,说明模型的拟合效果越好;

②某学校有男教师60名、女教师40名,为了解教师的体育爱好情况,在全体教师中抽取20名调查,则宜采用的抽样方法是分层抽样;

③线性相关系数越大,两个变量的线性相关性越弱;反之,线性相关性越强;

④在回归方程中,当解释变量每增加一个单位时,预报变量增加0.5个单位.

其中正确的结论是( )

A. ①②B. ①④

C. ②③D. ②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定点,直线相交于点,且它们的斜率之积为,记动点的轨迹为曲线

(1)求曲线的方程;

(2)过点的直线与曲线交于两点,是否存在定点,使得直线斜率之积为定值,若存在,求出坐标;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥PABCD的底面为矩形,ABBC1EF分别是ABPC的中点,DEPA.

1)求证:EF∥平面PAD

2)求证:平面PAC⊥平面PDE.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是自然对数的底数,.

1)求函数的图象在处的切线方程;

2)若函数在区间上单调递增,求实数的取值范围;

3)若函数在区间上有两个极值点,且恒成立,求满足条件的的最小值(极值点是指函数取极值时对应的自变量的值).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新冠肺炎疫情造成医用防护服紧缺,当地政府决定为防护服生产企业A公司扩大生产提供(万元)的专项补贴,并以每套80元的价格收购其生产的全部防护服.A公司在收到政府x(万元)补贴后,防护服产量将增加到(万件),其中k为工厂工人的复工率A公司生产t万件防护服还需投入成本(万元).

1)将A公司生产防护服的利润y(万元)表示为补贴x(万元)的函数;

2)对任意的(万元),当复工率k达到多少时,A公司才能不产生亏损?(精确到0.01

查看答案和解析>>

同步练习册答案